Method for Translating a Point in One Plane to Another Plane, Given a Set of Corresponding Control Points in Each Plane

Justin A. Parr q3ej7ejsjb@snkmail.com http://justinparrtech.com Version 1.0, 9/24/2016

Executive Summary

Assuming that we start with a set of control points in plane *A*, and a corresponding set of control points in plane *B*, this document describes a method for translating an arbitrary point *P* from plane *A* to its corresponding location in plane *B*.

Illustration 1: Using a set of points in Plane A, and a corresponding set of points in Plane B, Point P in Plane A is translated to its new position in Plane B

Notation

Through the course of this document, we will be using the following notation.

Notation	Meaning
A	Line A
PQ	Line segment formed by points P and Q
/ a	Angle a
/ PQR	Angle formed by line segments PQ and QR
P vs P'	Point P in Plane A will be notated as P, while the same point in Plane B will be notated as P'
sqrt()	Square Root function. sqrt(4) = 2
A * B	A multiplied by B
A/B	A divided by B

Corrected Arctangent Function

Some calculators and computers only return a result for ArcTangent in the first quadrant.

What is ArcTangent?

Tangent is one of the three basic trig functions.

For a given angle a:

sin(a)	<u>opposite</u> hypotenuse
cos(a)	<u>adjacent</u> hypotenuse
tan(a)	<u>opposite</u> adjacent

ArcTangent is the inverse of the tangent function:

atan(opp / adj) = a

Given a y offset and an x offset, we find the angle with:

a = atan (y/x)

If we want to find the angle of a line connecting two points, p_1 and p_2 :

$$a = atan((y_2 - y_1) / (x_2 - x_1))$$

The Problem With Atan and Quadrants

A circle has four quadrants:

In quadrant I, x and y are positive. In quadrant III, x and y are negative.

Positive divided by positive yields a positive result. Likewise, a negative divided by a negative yields a positive result.

This means that, without additional information, atan(y/x) would have the same result in both quadrant I and III. Likewise, a result in quadrant II can't be distinguished from quadrant IV.

This means that many calculator and compiler implementations won't return a result in quadrants II or III – they simply return a result in the range of +/- (π /2). Worse, some compilers only operate in quadrant I, returning 0.. π /2

Building a Corrected Atan Function

To correct the quadrant problem, we basically have to add a bunch of if..then logic:

a = atan(y/x) // Return a result in quadrant I: $0..\pi/2$

```
if y < 0 then
       // Quadrants III and IV
       if x < 0 then
               // Quadrant III -x,-y; Shift result 2 quadrants
               a = a + \pi
       else
               // Quadrant IV +x,-y; Shift result 3 quadrants
               a = a + 3\pi/2
       endif
else
       // Quadrants I and II
       if x < 0 then
               // Quadrant II -x,+y; Shift result 1 quadrant
               a = a + \pi/2
       else
               // Quadrant I +x, +y; Don't do anything
       endif
endif
```

This returns an angle a in the range of 0.. 2π

We will call our corrected function atanc – short for atan (corrected)

We will use this form to invoke our corrected atan function:

a = atanc(y,x)

Process Overview

1. In Plane A:

- a) Find the two closest control points to point P, and label them C₁ and C₂.
- b) C₁ will be assigned as the pivot.
- c) Find the distance *d* between the two control points.
- d) Find the distance *p* between P and the pivot, C₁.
- e) Compute *r* as the ratio of *p*:*d*.
- f) Find the absolute angle / *a* of line ____ C_1C_2 .
- g) Find the absolute angle / *b* of line $__ C_1 P$ (C_1 is the pivot).
- h) Compute relative angle /y as /b minus /a. (Note that /y might be negative or positive, and represents the angular offset)

2. In Plane B:

- a) Assign C₁' and C₂' as elements from Plane B corresponding to C₁ and C₂, respectively.
- b) Find the distance d' between C_1' and C_2' .
- c) Compute *p*' as *d*' times *r*.
- d) Find absolute angle / a of line ____ C₁ 'C₂'.
- e) Compute angle / b' as / a' + / y.
- f) Compute P' offset from C_1 ' using a vector whose magnitude is p' and angle is /b'.

Detailed Process

Approach: We will compute *y* and *r* in Plane A and carry them over to Plane B. Then, we will use *y*, *r*, *d*' and *a*' to calculate a vector (p'@b') which determines P' as an offset of C₁'.

1. Plane A

Variable	Explanation
C1	First Control point, and also the "pivot" point. C_1 is located at (X_1, Y_1)
C ₂	Second Control point, located at (X ₂ ,Y ₂)
Р	Arbitrary point, located at (X _P ,Y _P)
d	Distance from C_1 to C_2 (same as $d_{1,2}$)
р	Distance from C ₁ to P
а	Angle from normal through C_1 to \C_1C_2
b	Angle from normal through C_1 to C_1P
у	+/- Angle offset from / <i>a</i> to / <i>b</i>
r	Ratio of p:d
S{}	Set of all control points in Plane A

a) In the set of all control points S{}, find the two closest control points to P, C_1 and C_2 .

For each element S_k in $S_{1..n}$, compute $d_k = \text{sqrt}((X_P - X_k)^2 + (Y_P - Y_k)^2)$

Assign the elements of S corresponding to the two smallest values of $d_{1..n}$ to C_1 and C_2 , respectively.

So if d_k and d_m are the smallest, then $C_1 = S_k$ and $C_2 = S_m$

After this point, we can effectively ignore the rest of S{}

- b) C_1 (also, S_k) is the pivot.
- c) Compute d

 $d_{1,2} = sqrt((X_2 - X_1)^2 + (Y_2 - Y_1)^2)$

- d) p has already been computed: $p = d_k$
- e) Compute r

r = p / d

Note: r is constant from Plane A to Plane B

f) Compute / a, the angle between C₁ and C₂

 $a = atanc((Y_2 - Y_1), (X_2 - X_1))$

g) Compute / b, the angle between C₁ and P

 $b = \text{atanc}((Y_P - Y_1), (X_P - X_1))$

h) Compute / *y*, the offset of angle / *a* from angle / *b*.

$$y = b - a$$

Note: y is constant from Plane A to Plane B

2. Plane B

Variable	Explanation
C ₁ '	First Control point, and also the "pivot" point. C_1 is located at (X_1, Y_1)
C ₂ '	Second Control point, located at (X ₂ ',Y ₂ ')
Ρ'	The translation of P, and arbitrary point, from Plane A to Plane B
d'	Distance from C_1 ' to C_2 ' (same as $d_{1,2}$ ')
p'	Distance from C ₁ ' to P'
а'	Angle from normal through C_1 ' to \C_1 ' C_2 '
b'	Angle from normal through C_1 ' to C_1 'P'
у	+/- Angle offset from / a to / b in Plane A, and / a to / b in Plane B
r	Ratio of p:d in Plane A, and p':d' in Plane B
S'{}	Set of all control points in Plane B. Each S_{1n} in Plane A corresponds to S_{1n} ' in Plane B

a) Assign corresponding elements from S'{} from Plane B to C_1 ' and C_2 '.

Recalling that $C_1 = S_k$ and $C_2 = S_m$ Then, $C_1' = S_k'$ and $C_2' = S_m'$

Method for Translating a Point in One Plane to Another Plane, Given a Set of Corresponding Control Points in Each Plane J. Parr, 9/24/2016, Version 1

b) Compute d'

 $d_{1,2}' = sqrt((X_2' - X_1')^2 + (Y_2' - Y_1')^2)$

c) Compute *p*'using *r*, the ratio of d:p

p' = d' * r

d) Compute *a*'

 $a' = \operatorname{atanc}((Y_2' - Y_1'), (X_2' - X_1'))$

e) Compute *b*' from *a*' and *y*. Note that *y* is an angular offset, +/- from *a*.

b'= *a*' + *y*

f) Compute P' from C_1 plus a vector whose magnitude is p' and angle is /b'

 $X_{P}' = X_{1}' + p' * \cos(b')$ $Y_{P}' = Y_{1}' + p' * \sin(b')$

P' is located at (X_P', Y_P')

Limitations

In this example, the two closest control points to P don't move, but a third control point moves significantly. The resulting position for P' in Plane B is identical to the position of P, but doesn't take in to account the final position of control point C_3 .

In this situation, knowing that C_3 ' is closer in Plane B than either C_1 ' or C_2 ', we could go back to Plane A and average the result of translating P using each set:

- C₁, C₂
- C₂, C₃
- C₁, C₃

Further, having many more control points yields more accurate translation results.

Conclusion

This method provides a simple method to translate an arbitrary point from Plane A to Plane B using a network of control points.

A practical application for this process, is to dynamically translate an arbitrary location between virtual and physical coordinates based on a set of landmarks.