Method for Translating a Point in One Plane to Another Plane, Given a Set of Corresponding Control Points in Each Plane

Justin A. Parr
q3ej7ejsjb@snkmail.com
http://justinparrtech.com
Version 1.0, 9/24/2016

Executive Summary

Assuming that we start with a set of control points in plane A, and a corresponding set of control points in plane B, this document describes a method for translating an arbitrary point P from plane A to its corresponding location in plane B.

Plane A

Illustration 1: Using a set of points in Plane A, and a corresponding set of points in Plane B, Point P in Plane A is translated to its new position in Plane B

Notation

Through the course of this document, we will be using the following notation.

Notation	Meaning
\ldots A	Line A
\ldots PQ	Line segment formed by points P and Q
/ a	Angle a
/ PQR	Angle formed by line segments __ PQ and __ QR
P vs P'	Point P in Plane A will be notated as P, while the same point in Plane B will be notated as P
sqrt()	Square Root function. sqrt(4) =2
A * B	A multiplied by B
A / B	A divided by B

Corrected Arctangent Function

Some calculators and computers only return a result for ArcTangent in the first quadrant.

What is ArcTangent?

Tangent is one of the three basic trig functions.

For a given angle a:

$\sin (a)$	$\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos (a)$	$\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan (\mathrm{a})$	$\frac{\text { opposite }}{\text { adjacent }}$

ArcTangent is the inverse of the tangent function:

$$
\operatorname{atan}(o p p / a d j)=a
$$

Given a y offset and an x offset, we find the angle with:

$$
a=\operatorname{atan}(y / x)
$$

If we want to find the angle of a line connecting two points, p_{1} and p_{2} :

$$
\mathrm{a}=\operatorname{atan}\left(\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right)
$$

The Problem With Atan and Quadrants

A circle has four quadrants:

In quadrant I, x and y are positive. In quadrant III, x and y are negative.
Positive divided by positive yields a positive result. Likewise, a negative divided by a negative yields a positive result.

This means that, without additional information, $\operatorname{atan}(y / x)$ would have the same result in both quadrant I and III. Likewise, a result in quadrant II can't be distinguished from quadrant IV.
This means that many calculator and compiler implementations won't return a result in quadrants II or III - they simply return a result in the range of $+/-(\pi / 2)$. Worse, some compilers only operate in quadrant I, returning $0 . . \pi / 2$

Building a Corrected Atan Function

To correct the quadrant problem, we basically have to add a bunch of if..then logic:

$$
a=\operatorname{atan}(y / x) \quad / / \text { Return a result in quadrant I: } 0 . . \pi / 2
$$

```
if y<0 then
    // Quadrants III and IV
    if x < 0 then
            // Quadrant III -x,-y; Shift result 2 quadrants
            a= a + \pi
    else
            // Quadrant IV +x,-y; Shift result 3 quadrants
            a=a+3\pi/2
    endif
else
    // Quadrants I and II
    if x}<0\mathrm{ then
            // Quadrant II -x,+y; Shift result 1 quadrant
            a = a +\pi/2
    else
            // Quadrant I +x, +y; Don't do anything
    endif
endif
```

This returns an angle a in the range of $0 . .2 \pi$
We will call our corrected function atanc - short for atan (corrected)
We will use this form to invoke our corrected atan function:

$$
\mathrm{a}=\operatorname{atanc}(\mathrm{y}, \mathrm{x})
$$

Process Overview

1. In Plane A:

a) Find the two closest control points to point P, and label them C_{1} and C_{2}.
b) C_{1} will be assigned as the pivot.
c) Find the distance d between the two control points.
d) Find the distance p between P and the pivot, C_{1}.
e) Compute r as the ratio of $p: d$.
f) Find the absolute angle / a of line \qquad $\mathrm{C}_{1} \mathrm{C}_{2}$.
g) Find the absolute angle / b of line \qquad $\mathrm{C}_{1} \mathrm{P}$ (C_{1} is the pivot).
h) Compute relative angle $/ y$ as $/ b$ minus $/ a$. (Note that $/ y$ might be negative or positive, and represents the angular offset)

2. In Plane B:

a) Assign C_{1} ' and C_{2} ' as elements from Plane B corresponding to C_{1} and C_{2}, respectively.
b) Find the distance d^{\prime} between $\mathrm{C}_{1}{ }^{\prime}$ and $\mathrm{C}_{2}{ }^{\prime}$.
c) Compute p^{\prime} as d^{\prime} times r.
d) Find absolute angle / a ' of line $\quad{ }^{\prime} \mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}{ }^{\prime}$.
e) Compute angle $/ b^{\prime}$ as $/ a^{\prime}+/ y$.
f) Compute P^{\prime} offset from C_{1} ' using a vector whose magnitude is p ' and angle is / b '.

Detailed Process

Approach: We will compute y and r in Plane A and carry them over to Plane B. Then, we will use y, r, d^{\prime} and a ' to calculate a vector (p ' @ b^{\prime}) which determines P^{\prime} as an offset of C_{1} '.

1. Plane A

Variable	Explanation
C_{1}	First Control point, and also the "pivot" point. C_{1} is located at $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$
C_{2}	Second Control point, located at $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$
P	Arbitrary point, located at $\left(\mathrm{X}_{\mathrm{P}}, \mathrm{Y}_{\mathrm{P}}\right)$
d	Distance from C_{1} to $\mathrm{C}_{2}\left(\right.$ same as $\left.\mathrm{d}_{1,2}\right)$
p	Distance from C_{1} to P
a	Angle from normal through C_{1} to $\quad \mathrm{C}_{1} \mathrm{C}_{2}$
b	Angle from normal through C_{1} to $\mathrm{C}_{1} \mathrm{P}$
y	+/- Angle offset from / a to $/ b$
r	Ratio of p:d
$\mathrm{S}\}$	Set of all control points in Plane A

a) In the set of all control points $\mathrm{S}\left\}\right.$, find the two closest control points to $\mathrm{P}, \mathrm{C}_{1}$ and C_{2}.

For each element S_{k} in $S_{1 . n}$, compute $d_{k}=\operatorname{sqrt}\left(\left(X_{P}-X_{k}\right)^{2}+\left(Y_{P}-Y_{k}\right)^{2}\right)$

Assign the elements of S corresponding to the two smallest values of $d_{1 . . n}$ to C_{1} and C_{2}, respectively.
So if d_{k} and d_{m} are the smallest, then $\mathrm{C}_{1}=\mathrm{S}_{\mathrm{k}}$ and $\mathrm{C}_{2}=\mathrm{S}_{\mathrm{m}}$ After this point, we can effectively ignore the rest of $S\}$
b) C_{1} (also, S_{k}) is the pivot.
c) Compute d
$\mathrm{d}_{1,2}=\operatorname{sqrt}\left(\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)^{2}+\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right)^{2}\right)$
d) p has already been computed: $\mathrm{p}=\mathrm{d}_{\mathrm{k}}$
e) Compute r
$r=p / d$
Note: r is constant from Plane A to Plane B
f) Compute / a, the angle between C_{1} and C_{2}

$$
a=\operatorname{atanc}\left(\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right),\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)\right)
$$

g) Compute $/ b$, the angle between C_{1} and P
$b=\operatorname{atanc}\left(\left(\mathrm{Y}_{\mathrm{P}}-\mathrm{Y}_{1}\right),\left(\mathrm{X}_{\mathrm{P}}-\mathrm{X}_{1}\right)\right)$
h) Compute $/ y$, the offset of angle / a from angle / b.

$$
y=b-a
$$

Note: y is constant from Plane A to Plane B

2. Plane B

Plane B

Variable	Explanation
$\mathrm{C}_{1}{ }^{\prime}$	First Control point, and also the "pivot" point. C_{1} ' is located at ($\mathrm{X}_{1}{ }^{\prime}, \mathrm{Y}_{1}{ }^{\prime}$)
$\mathrm{C}_{2}{ }^{\text {' }}$	Second Control point, located at ($\mathrm{X}_{2}{ }^{\prime}, \mathrm{Y}_{2}{ }^{\prime}$)
P'	The translation of P, and arbitrary point, from Plane A to Plane B
d'	Distance from $\mathrm{C}_{1}{ }^{\prime}$ to $\mathrm{C}_{2}{ }^{\prime}$ (same as $\mathrm{d}_{1,2}{ }^{\prime}$)
p'	Distance from C_{1} ' to P^{\prime}
a^{\prime}	Angle from normal through $\mathrm{C}_{1}{ }^{\prime}$ to $\ldots \mathrm{C}_{1}{ }^{\prime} \mathrm{C}_{2}{ }^{\prime}$
b^{\prime}	Angle from normal through $\mathrm{C}_{1}{ }^{\prime}$ to $\mathrm{C}_{1}{ }^{\prime} \mathrm{P}$ '
y	+/- Angle offset from / a to / bin Plane A, and / a^{\prime} 'to / b' in Plane B
r	Ratio of p:d in Plane A, and p':d' in Plane B
S' $\{$ \}	Set of all control points in Plane B. Each $\mathrm{S}_{1 . . n}$ in Plane A corresponds to $\mathrm{S}_{1 . . n}$ ' in Plane B

a) Assign corresponding elements from $S^{\prime}\{ \}$ from Plane B to $C_{1}{ }^{\prime}$ and $C_{2}{ }^{\prime}$.

Recalling that
$\mathrm{C}_{1}=\mathrm{S}_{\mathrm{k}}$ and $\mathrm{C}_{2}=\mathrm{S}_{\mathrm{m}}$
Then,
$\mathrm{C}_{1}{ }^{\prime}=\mathrm{S}_{\mathrm{k}}{ }^{\prime}$
and
$\mathrm{C}_{2}{ }^{\prime}=\mathrm{S}_{\mathrm{m}}{ }^{\prime}$
b) Compute d’

$$
\mathrm{d}_{1,2^{\prime}}=\operatorname{sqrt}\left(\left(\mathrm{X}_{2}^{\prime}-\mathrm{X}_{1}{ }^{\prime}\right)^{2}+\left(\mathrm{Y}_{2}^{\prime}-\mathrm{Y}_{1}{ }^{\prime}\right)^{2}\right)
$$

c) Compute p 'using r, the ratio of $\mathrm{d}: p$

$$
\mathrm{p}^{\prime}=\mathrm{d}^{\prime} * \mathrm{r}
$$

d) Compute a,

$$
a^{\prime}=\operatorname{atanc}\left(\left(\mathrm{Y}_{2}^{\prime}-\mathrm{Y}_{1}{ }^{\prime}\right),\left(\mathrm{X}_{2}^{\prime}-\mathrm{X}_{1}^{\prime}{ }^{\prime}\right)\right)
$$

e) Compute b ' from a ' and y. Note that y is an angular offset, +/- from a.

$$
b^{\prime}=a^{\prime}+y
$$

f) Compute P^{\prime} from C_{1} plus a vector whose magnitude is p ' and angle is / b '

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{P}}^{\prime}=\mathrm{X}_{1}^{\prime}+p^{\prime} * \cos \left(b^{\prime}\right) \\
& \mathrm{Y}_{\mathrm{P}}^{\prime}=\mathrm{Y}_{1}^{\prime}+p^{\prime} * \sin \left(b^{\prime}\right)
\end{aligned}
$$

P^{\prime} is located at $\left(X_{P}{ }^{\prime}, Y_{P}{ }^{\prime}\right)$

Limitations

Plane A

Plane B

In this example, the two closest control points to P don't move, but a third control point moves significantly. The resulting position for P^{\prime} in Plane B is identical to the position of P, but doesn't take in to account the final position of control point C_{3}.

In this situation, knowing that C_{3} ' is closer in Plane B than either C_{1} ' or C_{2} ', we could go back to Plane A and average the result of translating P using each set:

- $\mathrm{C}_{1}, \mathrm{C}_{2}$
- $\mathrm{C}_{2}, \mathrm{C}_{3}$
- $\mathrm{C}_{1}, \mathrm{C}_{3}$

Further, having many more control points yields more accurate translation results.

Conclusion

This method provides a simple method to translate an arbitrary point from Plane A to Plane B using a network of control points.

A practical application for this process, is to dynamically translate an arbitrary location between virtual and physical coordinates based on a set of landmarks.

