
Solving Irregularly-Shaped Mazes Using Cellular
Automata With State Machine Logic

Justin A. Parr
q3ej7ejsjb@snkmail.com
http://justinparrtech.com
Version 1.1, 3/2/2016

Executive Summary
Existing maze-solving algorithms require ideal conditions or environments, such as crisp angles, ideal
contrast, and uniform proportions.

This paper specifies the details of a flexible and efficient algorithm that is capable of analyzing and
solving any hand-drawn maze that follows certain basic rules.

Table of Contents
Solving Irregularly-Shaped Mazes Using Cellular Automata With State Machine Logic.........................1

Executive Summary..1
Version History..3
Overview of Existing Solutions..4

Node / Graph Analysis..4
Flood Fill..5
Left-Hand Rule...7
Existing Cellular Automata Solution..8

Background Information...10
State Machine Logic...10
Cellular Automata...11

Project Goals...12
Solution Overview...13
Solution Details...14

Image Analytics..14
Acquisition – Layer 1...14
Pixel Analysis by Cell – Layer 2..15
Cell Contrast Analysis – Layer 2...16
Cell Color Analysis – Layer 2..17
Wall Analysis – Layer 3...20
Overlay Start and Finish – Layer 3..23
Sample Processed Maze Image..23

Key Parameters...26

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 1 of 60

mailto:q3ej7ejsjb@snkmail.com
http://justinparrtech.com/

Application (Machine) States...28
Cell State Logic..30

Overview of Cell States...30
Cell Neighborhood...31
Cell Structure...32
Application Flow...33
Machine State “Seek” (1) Cell Logic...34
Machine State “Retrace” (2) Cell Logic..37
Machine State “Optimizers” (3 and 4) Cell Logic...38

State Logic Framework...43
Sample Screens Showing Solver Process...44
Sample Output Layer..47

Solution Analysis...48
Interpret a Bitmap of a Hand-Drawn Maze..48
Convert a Bitmap in to a Cell Array...49
Computationally Efficient..50
Ignore Shape, Scale, and the Requirement to Define Nodes..53
Produce a Discreet Result Set...53

Implementation..55
Real-World Applications...56
Future Works...57

MazeBot Enhancements...57
Other Works..58

Conclusion...60

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 2 of 60

Version History

Version Date Author Revision Notes

1.0 2/2016 Justin Parr Initial Release

1.1 3/2/2016 Justin Parr Fix Typos

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 3 of 60

Overview of Existing Solutions

Node / Graph Analysis

A node map, or graph, shows the relationship between all relevant points in a maze, with redundant or
irrelevant detail eliminated.

Relevant points are start, end, junctions, and dead-ends, and the pathways of the graph show how they
interconnect, along with a distance (or cost) metric.

The algorithm itself uses a polynomial or recursive approach to find the best path from start to finish,
through the graph.

A graph-based solving algorithm must either have node and path information provided from another
source, or it must be able to generate node and path information.

In the real world, GPS navigation systems are an example of a node-based solving algorithm – these
systems use a GIS (Graphical Information System) database, to map node and path information, plus
metrics such as distance, maximum speed, and typical traffic impact, to a bitmap or outline view of a
road map. The solver algorithm crunches all of the node and path information in order to find the most
efficient route between two points.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 4 of 60

(Courtesy of Google)

Flood Fill

Flood Fill algorithms do exactly that – they flood a map, progressing from start to finish, until the
finish point is reached.

Using a metric, some portion of the result set can be eliminated, leaving a vague path from start to
finish.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 5 of 60

Flood fill algorithms are very flexible, and can be used in a variety of applications, but they don't
produce a discreet result set – rather, the result set produced by a flood fill contains multiple possible
solutions, including an ideal solution.

The figures above demonstrate an extremely simple maze, and flood fill.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 6 of 60

Left-Hand Rule

A mathematical approach to maze-solving is the left-hand rule. This uses a mathematical concept
called topology to guaranty that you will enter AND exit a maze, by simply placing your left hand on
the left wall of the maze. As you turn corners, etc, you keep your left hand on the wall.

The problem with this approach is that it doesn't guaranty that you'll reach your objective. A certain
class of mazes can be constructed, using concentric loops, that defy the left-hand rule. Because each
layer is physically-isolated from the previous layer, you'll never reach the inner layer.

In the figure above, we can see that the “left hand rule” results in a complete circuit of the maze,
returning to the starting position, without ever considering the “inner layer” of walls that happens to
contain the objective.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 7 of 60

Existing Cellular Automata Solution

Maze-solving solutions based on Cellular Automata already exist – they use the concept of dead-end
filling, to carve away all of the “invalid” paths, leaving a single, remaining path.

This works effectively, but requires ideal conditions. A pathway must be exactly the width of one cell
for this approach to work. In the figures above, we see an example.

As with the left-hand rule, this approach can't easily solve mazes with multiple solutions, as we see in
the figures below:

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 8 of 60

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 9 of 60

Background Information
This solution makes extensive use of State Machine Logic, and Cellular Automata, which itself is based
on State Machine Logic.

For more information about State Machine Logic, read this:
https://en.wikipedia.org/wiki/Finite-state_machine

For more information about Cellular Automata, read this:
https://en.wikipedia.org/wiki/Cellular_automaton

State Machine Logic

State machine logic leverages the concept that the entire system exists as a “machine” that is in a
specific state.

The machine can switch states based its current state, specific input, and the specific set of rules for the
current state.

A state machine reads its input, evaluates that input based on the rules associated with its current state,
then finds a new state, and repeats the process until an “end state” is reached.

In addition to the cellular automation logic, in this solution, we use a larger system of states to
represent machine “phases” or modes, that seek to accomplish a specific portion of the overall task.

The diagram above is a state machine diagram for our application.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 10 of 60

https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Finite-state_machine

Cellular Automata

Cellular automata are a type of system that breaks an environment up in to cells that are arranged in to
a grid.

Each cell exists in one of several possible states, and may store other specific information, such as a
distance metric.

State machine logic governs how a specific cell reacts based on summary knowledge of its neighbors
states.

In the most famous example, known as Conway's Game of Life, a simple set of rules allows each cell
to react based on the count of its neighbor cells. The state machine for Conway's Life is depicted
above.

• Each cell is either “alive” or “dead” (one of two states), depicted above by blue (alive) and gray
(dead)

• In a dead state, if a cell has exactly 3 neighbors, it transitions to a “live” state

• In a live state:

◦ If a cell has 2 or 3 neighbors, it persists in a live state

◦ If a cell has less than 2 neighbors, it dies of loneliness

◦ If a cell has greater than 3 neighbors, it dies of overcrowding

These simple rules, when seeded with either random values, or specific known arrangements, yields
incredible complexity.

In our solution, we will use specific cell states to represent specific portions of the overall solution, and
each cell will change states and respond to a set of rules within an overall state machine framework.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 11 of 60

Project Goals
The following are goals of this project. The solution must:

• Interpret a bitmap of a hand-drawn maze as follows:

◦ Drawn on a white sheet of paper – white spaces represent open areas that may or may not be
part of the solution set, and are capable of changing states.

◦ Maze walls are drawn with a black marker – black spaces represent immutable obstacles

◦ The maze start is drawn as a red dot – the “most red” cell is the start of the maze

◦ The maze finish is drawn as a blue dot – the “most blue” cell is the maze finish

• Leverage simple image analysis to convert a raw bitmap in to a weighted cell array that can be
fed to the solver algorithm.

• Be computationally-efficient.

• Ignore shape, scale, and the requirement to define nodes.

• Produce a discreet set of coordinates that represent cells along the path of the solution. The
path must be one cell wide, and the coordinates represent a list of left-right-zero turns that result
in navigating from “start” to “finish”.
Stated another way, starting at the first cell in the set, each subsequent cell is connected at 0
degrees, +90 degrees, or -90 degrees, representing straight ahead (to the next cell), a right turn
(and forward to the next cell), or a left turn (and forward to the next cell), respectively.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 12 of 60

Solution Overview

The solution design uses layers to process information in different ways, and then pass the results to
adjacent layers.

• Acquire Image – This is the raw bitmap as acquired by the camera

• Color / Contrast Analysis – Breaks the image in to cells, finds the start (red) location and the
finish (blue) location, and assigns initial cell color values.

• Wall Analysis – Looks at local contrast to find walls, and assign “wall” or “empty” initial cell
states.

• CA / State Machine Solver – Iteratively runs the state machine logic until the maze is found, or
until it is determined that no solution is possible.

• Output Layer – In the prototype application, this presents a visual representation of the solution,
by tracing “path” cells over the original bitmap image. The output layer could also be used to
store the final set of “path” cells as a data set within a file.

From a user's perspective, they see the following:

1. Acquire an image using the camera

2. Output of the initial analytics (color / contrast and wall analysis steps). Although this is
technically only a point of interest, and irrelevant to the final output, it's both visually-
interesting, and allows the user to confirm that the program correctly interpreted the parameters
of the source maze.

3. The solver runs in realtime, ending when the maze is solved or the machine determines that no
solution is possible.

4. The program presents the final solution, a set of “path” cells superimposed on the original
bitmap

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 13 of 60

Solution Details

Image Analytics

Image analysis consists of three layers:
1. Acquire the bitmap
2. Color / Contrast Analysis
3. Wall Analysis

We'll look at each of these in detail.

Acquisition – Layer 1

As this is an Android application, acquisition consists of presenting a user interface with a preview
window, where the user can activate the flash if required, ensure that the image is centered and focused,
and take the picture.

The picture itself is saved to SD card as a JPEG, and then read back in as a bitmap object.

The bitmap is scaled to the screen resolution using the following method (assumes landscape mode,
where device width > device height):

br = bitmap.width / bitmap.height

bh = device.height

bw = bh * br

if bw > device.width then
bw = device.width
bh = bw / br

• br – contains the bitmap's aspect ratio (width / height)

• bh – projected bitmap height. Initially, this matches the device height, assuming an aspect ratio
the same or less than the device's aspect ratio.

• bw – projected bitmap width. Initially, we multiply the display height (bh) times the aspect
ratio to obtain a proportional width.

• If the resulting width (bw) is greater than the device width, then we know that the picture is
very wide, but short. We set the projected bitmap width (bw) to the device width, and then
divide by the aspect ratio to obtain the proportional height.

This could be done with an if then / else, comparing the aspect ratio of the bitmap to the device, but in
most cases, the camera's aspect ratio will be the same or less than the device aspect ratio, because the

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 14 of 60

camera takes images in standard formats, such as 16:9, but the device display is usually much shorter,
such as 2:1. This means that the initial calculations for projected height and width will be correct most
of the time, thus making it more efficient to assume that up front, and simply verify with an if then.

We start with a neutral gray field, and then overlay the scaled bitmap, centered, using the bitmap
scaling function.

The result is a centered bitmap with gray borders.

Gray is used as the surrounding color, to provide neutral contrast for color and wall analysis.

Next, the cell size is calculated based on the canvas (scaled bitmap) height, bh:

cellsize = bh / 120

120 is an experimentally-derived constant, allowing sufficient resolution to distinguish maze features
drawn in marker and then digitized in to a bitmap, while maintaining computational efficiency. As the
number of cells increases, the number of pixels per cell decreases, and vice-versa. Larger cells are
more computationally-efficent, but yield lower overall resolution, and can miss significant details.
Smaller cells are more accurate, but less computationally-efficient.

The resulting cell size is used to aggregate individual pixels during the subsequent analysis layers.

Pixel Analysis by Cell – Layer 2

The bitmap is broken up in to groups of pixels, cellsize x cellsize.

For each pixel in the group, we perform three calculations:

1. Split the pixel in to red, green, and blue values

c = pixelcolor

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 15 of 60

red = (c and 0xff0000) / 0x10000
green = (c and 0xff00) / 0x100
blue = (c and 0xff)

The raw pixel color consists of a 32-bit value, where the highest-order 8 bits are the alpha
level, and can effectively be discarded.

The next 8 bits constitute the “red” value, then “green”, and finally, “blue” is the 8 least
significant bits.

“Why aren't you using YCrCb?”

Because, even though JPEG uses YCrCb color space, it gets converted to RGB when loaded in
to a native bitmap object. We need a computationally-efficient way to take RGB color data,
which is easy to obtain from a native pixel color value, and derive the various flavors needed
for cell-based analysis.

2. Aggregate red, green, and blue values for the cell

totalRed = totalRed + red
totalGreen = totalGreen + green
totalBlue = totalBlue + blue

Aggregate values will be turned in to averages at the cellular level.

3. Find the darkest pixel value

contrast = red + green + blue
if contrast < darkest then

darkest = contrast

Technically, this should be:

contrast = sqrt(red * red + green * green + blue * blue)

However, adding is computationally more efficient, and the known contrast between black and
white allows us to take a shortcut

Cell Contrast Analysis – Layer 2

The first step is to create an average RGB value. We accomplish this by dividing the total red, green,
and blue values by the number of pixels in each cell.

blockSize = cellsize * cellsize
averageRed = totalRed / blockSize
averageGreen = totalGreen / blockSize
averageBlue = totalBlue / blockSize

The cell contrast is simply the “darkest” pixel value, as calculated by:

contrast = averageRed + averageGreen + averageBlue

The resulting value is assigned to the cell, and used later for wall analysis.

cell.contrast = contrast

At the same time, we track the darkest overall cell value

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 16 of 60

if contrast < darkest then
darkest = contrast

Cell Color Analysis – Layer 2

Red and blue are handled in an identical manner, so we'll look at red as an example for both.

We need to find the “reddest” pixel, so we calculate red's distance from green, and red's distance from
blue, for the cell's average color value:

rg = averageRed - averageGreen
rb = averageRed – averageBlue

Using rg (difference between red and green) as one axis, and rb (difference between red and blue) as
the second axis, we are looking for a red value that's equally-distant from both – a line that's extending
out at a 45 degree slope.

We use the tangent as a fitness function to measure the slope of the line, where an ideal slope (45
degrees) is 1, and anything approaching either axis (0) is increasingly less ideal.

If rb > rg then
slope = rg / rb

else
slope = rb / rg

This returns a value that, as the “red vector's” angle diverges from 0 degrees, returns 0, building toward
a return value of 1 as the angle approaches 45 degrees, then decreases from 1 back to 0 as the angle
approaches 90 degrees.

We calculate the “red” value using Pythagoras, then scale it by the fitness factor, assuring that the
resulting value decreases sharply as it points toward green or blue.

finalRed = sqrt(rb*rb + rg*rg) * slope

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 17 of 60

The last step is to track the “reddest” value, and its grid (cell) location:

if finalRed > reddest then
reddest = finalRed
reddest.X = cell.X
reddest.Y = cell.Y

Further, we only have to perform this calculation if “red” is the largest color value – otherwise, we can
simply skip the entire process. Putting all of this together, we have:

if (averageRed > averageBlue) and (averageRed > averageGreen) then

rg = averageRed - averageGreen
rb = averageRed – averageBlue

If rb > rg then
slope = rg / rb

else
slope = rb / rg

finalRed = sqrt(rb*rb + rg*rg) * slope

if finalRed > reddest then

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 18 of 60

reddest = finalRed
reddest.X = cell.X
reddest.Y = cell.Y

The same approach is used for finding the bluest (finish) cell.

The x,y grid location of the start and end coordinates are explicitly tracked – everything else is
dynamic.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 19 of 60

Wall Analysis – Layer 3

The wall analysis consists of the average contrast of its local neighborhood, compared to its own
contrast.

Through experimentation, the ideal “cell neighborhood” used to find wall contrast was determined to
be plus and minus 5 cells of the target cell, in each direction.

Cell Neighborhood for Wall Detection

Wall analysis looks at each cell's contrast value, compared to the average contrast of its
“neighborhood”. If the neighborhood's average contrast compared to the cell's contrast exceeds a
specific threshold, then the cell itself is a “wall”, otherwise, it's “empty”.

Remembering that the contrast value is the minimum pixel contrast value within the cell, the pixel
contrast is calculated as red + green + blue.

Recalling that the raw color value is stored as three 8-bit fields, one each for red, green, and blue, this
results in a value range for any of the three of 0 to 255.

This means that there is a maximum contrast (pure white cell) of 3 x 255 = 765

The minimum cell contrast (pure black) would be 3 x 0 = 0

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 20 of 60

Because we're dealing with an analog source, pure white and pure black are equally unlikely – the
“whitest” cell is probably light gray, and the “darkest” cell is probably dark gray, and the overall
contrast is a range between the two values.

Because any given maze would be mostly white (black walls drawn on white paper), the average for
any given neighborhood is going to be mostly white (or light gray), allowing even a small threshold to
detect a “wall” cell.

Experimentally, this threshold was determined to be 20.

Because the bitmap is a photograph, perhaps taken in less-than-ideal lighting, and because lighting
conditions tend to change as a function of position within the bitmap, we can't use the entire bitmap's
average to find a specific cell's contrast – for example, if a “white” cell in the lower-left is poorly-lit, it
might appear as gray. Meanwhile, if a “black” cell in the upper-right of the same bitmap is over-
exposed, it might appear to be the same shade of gray.

The local contrast approach provides a large sampling of nearby cells (which we assume are mostly
white), yet adapts well to gradually-changing lighting conditions.

In the figure above, we see a cell within it's 11 x 11 neighborhood. The cell appears to be part of a
wall, but because of the “aliasing” effect created during the analysis phase, it's difficult to tell. If the
threshold is too high, fewer cells become walls, which can result in gaps. If the threshold is too low,
walls can become overly-thick, and can even become conjoined.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 21 of 60

Meanwhile, the cell outlined in blue, even though it has some dark neighbors, clearly aligns with the
majority of non-wall cells, falls within the threshold, and is therefore “empty”.

One byproduct of the “contrast” approach is that both red and blue cells appear black – we'll deal with
this as part of the state machine logic.

As it turns out, this approach is extremely fast and accurate at edge detection in general. Here are some
bitmaps, scaled to device resolution, that have been processed by the wall-detect algorithm:

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 22 of 60

Overlay Start and Finish – Layer 3

The final task is to set the start cell's state, and finish cell's state.

There is nothing fancy here – we rely on the x,y grid location that we captured during Layer 1 for each
of these, and simply, explicitly set the appropriate cells' states respectively.

As mentioned previously, the wall detect algorithm results in a “start blob” and a “finish blob” - we
only accurately find the “reddest” and “bluest” (each) cells, which means that the start and end location
could simply be trapped – surrounded by “wall” cells that are not quite as red or blue, at the start and
end of the maze, respectively.

Initially, attempts to resolve this problem by adjusting the wall threshold and color detection process
were largely unsuccessful. Instead, later, we'll use a special machine state to resolve this problem.

Sample Processed Maze Image

At the end of layer 3, we're done with image and wall analysis, and we're ready to proceed with the
state machine solver.

Let's take a minute to walk through the image analysis process, and its artifacts.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 23 of 60

Let's start with a sample hand-drawn maze:

We see that lighting quality is poor, resulting in over-exposure in the bottom left and upper-right
corners, discoloration, some portions are out of focus, and there are plenty of “JPEG artifacts”
bordering many of the walls.

Here is the resulting image after being processed by layer 2:

We see that “wall”, “start”, “finish”, and “empty” cell types have been correctly identified, despite the

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 24 of 60

fact that some wall elements, due to JPEG artifacts, almost look blue. We also see “aliasing” artifacts
for many of the walls – if our layer 3 threshold is too high, there will be gaps in walls. If it's too low
the walls will be too thick, and the “start” and “finish” blobs will merge with the adjacent walls.

Here is the same image after layer 3's wall detection process:

Every wall has been identified, with a thickness of at least one cell. Empty passageways are clearly
identified and passable. As discussed, we have the “start” and “finish” blob problem.

“Your mileage may vary” - this is an analog image that's converted to a discreet bitmap, and then
munged in order to obtain the algorithm's “best guess” about what the user intended, with respect to
start, finish, and walls. Some image tweaking may be necessary, and over time, the user will gain
experience regarding techniques that translate well, and those that don't, and will be able to adjust their
“style” accordingly – how the maze is drawn, lighting conditions, camera distance, angle, etc...

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 25 of 60

Key Parameters

At this point, key parameters are hard-coded, and are set to experimentally-determined optimal values.
Later versions of the program may allow the user to change these:

Parameter Value Impact

Vertical cell
count

120 This value directly impacts the cellsize, or the number of pixels per cell,
which is computed by dividing the display height by this value.

Larger values result in more, smaller cells. This accommodates finer
detail, but requires more computing power per cycle, and thus processes
more slowly.

Smaller values result in fewer, larger cells. Large cells can fail to detect
narrow passages, but are very compute-friendly (much faster).

Any increase (y) in cell count (x) results in 2xy + y^2 additional cells to
compute for each cycle.

As conventional wisdom dictates, as y approaches x, this represents a
doubling of both the vertical and horizontal cell resolution, resulting in 4
times the original resolution, and 300% net additional cells that must be
computed:

If x = y:

vertical: x + y = x + x = 2x

horizontal: x + y = x + x = 2x

resolution: 2x * 2x = 4x^2

increase: (4x^2 – x^2) / x^2 = 3x^2 / x^2 = 3 (or, 300%)

Local
neighborhood

5 Used during wall detection, for a given cell at x,y, cells in the range of
(x-5..x+5, y-5..y+5) will be used to determine average local contrast.

A value of 5 results in an 11 x 11 grid of cells – {x-5..x-1, x, x+1..x+5}
(11 elements) by {y-5..y-1, y, y+1..y+5} (11 elements).

Because we ignore the cell value itself, the number of cells in this
neighborhood is:

(2n + 1)^2 - 1

For a neighborhood size of 5, this results in a local neighborhood of 120
cells.

A larger local neighborhood means that wall detection is more crisp and
accurate under ideal conditions, but runs the risk that gradual changes in
the image (due to artifacts of the acquisition process) will result in

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 26 of 60

incomplete wall detection. A larger local neighborhood also means that
the number of computing cycles for wall detection increases, even
though this is largely mitigated by the fact that wall detection is
completed in a single pass.

A smaller neighborhood runs the risk of detecting too many walls, as
insufficient cells are analyzed when making the determination.

Increasing n-1 to n (a net increased neighborhood size of 1) results in:

each cell: 8n + 8 additional neighbors

entire grid: gridWidth * gridHeight * (8n + 8)

A net increase of m, where:

n' = n + m

results in an additional neighborhood cell count of:

8 (n' (n' +1) / 2 - n (n + 1) / 2)

For example, if the n = 3, and we increase by 2:

original neighborhood: (3*2 + 1)^2 -1 = 7^2 -1 = 48

new neighborhood size: n' = n + 2 = 3+2 = 5

new neighborhood:

8 ((5 (5+1)/2) - (3(3+1)/2))

8 ((5 * 6 / 2) – (3 * 4 / 2))

8 (15 – 6)

8 * 9

72

Size 5 neighborhood: (5*2 + 1)^2 – 1 = 11^2 – 1 = 120

comparing size 5 to size 3: 120 – 48 = 72

As cell size decreases, a larger local neighborhood is required in order to
maintain a proper view of “local contrast”.

Because cell size is determined by the Vertical Cell Count (see above),
which is initially-fixed at 120, there probably needs to be a fixed ratio of
120:5 (or close) between the vertical cell count and the local
neighborhood size, although this hasn't been experimentally verified.

Wall threshold 20 If the average contrast of a cell's neighborhood (excluding itself),
subtracted from the cell's contrast is greater than this threshold, then the
cell is a “wall”, otherwise, it's “empty”.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 27 of 60

wall = avgNeighborContrast – cell.contrast > threshold
empty = avgNeighborContrast – cell.contrast <= threshold

Although changing this parameter has no impact on computing
requirements, it affects how accurately walls are interpreted.

Increasing this value means that cells with a middle gray value might be
ignored, resulting in gaps where a wall should exist.

Decreasing this value means that cells with a light gray value might
inadvertently be interpreted as a wall, and can result in conjoined walls
and other artifacts.

Application (Machine) States

The solver algorithm uses four main machine states to solve the maze and then optimize the final path.
A fifth machine state must be employed in order to overcome the “start” and “end” blob problem.

Each pass of the cell grid counts the number of cell transitions from one state to another, known as
“flips”. If the flip count is zero after a pass of the grid, then the cell logic has reached a stable state,
and the machine logic reacts differently based on its current state.

State Description

99 Fix start / end blobs

“Wall” cells that are adjacent to “start” or “finish” are converted to “start” and “finish”,
respectively.

This effectively “eats” the start and end blobs, but if one of these is conjoined to a wall,
the algorithm will start to eat the walls of the maze, considering any connected wall to
be part of the solution set.

Other than acting on walls rather than empty space, this is identical to the “seek” state
(state 1)

Each converted cell stores a distance metric, which is the max of its neighbors' distance
metrics, plus 1. So if the cell's highest-metric neighbor is 20, the cell itself will be
metric 21. Any cells converted by this cell will be 22, etc...

When the cell state logic is stable (zero flips), the machine switches to “seek” state
(state 1).

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 28 of 60

1 Seek (Flood fill)

“Empty” cells that are adjacent to “start” or “finish” are converted to “start” and
“finish” respectively.

This approach is effectively a flood fill, where each successive generation progresses in
all possible directions, by the distance of 1 cell.

Each converted cell stores a distance metric, which is the max of its neighbors' distance
metrics, plus 1. So if the cell's highest-metric neighbor is 20, the cell itself will be
metric 21. Any cells converted by this cell will be 22, etc...

When a “start” cell has at least one finish neighbor, a path through the maze has been
found, and the machine switches to “retrace” state (state 2)

If the cell state logic is stable (no flips), then no solution to the maze is possible – every
cell has been flooded without connecting start to finish. In this case, the machine
terminates (state -1)

2 Retrace

In the retrace state, the cell logic works backward from the join cell to both the start
and end points simultaneously, following only the most efficient path based on
decreasing cell metric.

The resulting solution set includes all possible solutions of equal length – we'll explore
this in more detail while examining the cell state logic.

Once the cell state logic becomes stable, the machine switches to the vertical optimizer
(state 3)

3 Vertical optimizer

As stated, the resulting solution set includes multiple possible pathways.

The vertical optimizer reduces vertical redundancy, resulting in a solution set whose
horizontal pathways are only 1 cell wide.

When the cell state logic becomes stable, the machine switches to the horizontal
optimizer (state 4)

4 Horizontal optimizer

The horizontal optimizer reduces horizontal redundancy, resulting in a solution set
whose vertical pathways are only 1 cell wide.

Running vertical and horizontal optimization concurrently, results in shearing, and
creates gaps in the resulting pathway.

When the cell state logic becomes stable, the machine switches to the “terminate –
success” state (state -2)

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 29 of 60

-1 Terminate – Fail

-2 Terminate – Success

Cell State Logic

Cell state logic rules change based on the overall machine state. We will look at each machine state
and its associated cell state logic in detail.

Overview of Cell States

Each cell can exist in one of multiple states:

Cell State Description

0 - Empty Empty space represents any viable pathway, and may change to another state as the
solution progresses.

1 - Wall Walls are generally immutable. They are generated as a result of contrast and wall
analysis, and remain static through the course of the solution. Walls are obstacles that
define the parameters of the resulting solution.

2 - Start One start cell initially marks the start location. As the flood fill (seek) machine state
progresses, empty neighboring cells are converted to “start” cells.

3 - Finish Like start, there is initially 1 finish cell, and as the flood fill (seek) machine state

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 30 of 60

progresses, empty neighboring cells are converted to “finish” cells.

4 - Flux Cells switch from start or finish to “flux” state during the retrace process, and at the end
of the retrace machine state, the set of all flux cells represents the set of all possible
equidistant solutions.

10 - Path During optimization, the final result set of “flux” cells are converted to “path” cells.

5 - Dead Cells that are not part of the final path are systematically killed off, and end up in the
“dead” state.

Here is a cell state transition diagram:

Cell Neighborhood

Although some specialized cell neighborhood configurations exist, most cellular automata either use an
8-cell neighborhood, consisting of the cardinal directions, plus diagonals, or a 4-cell neighborhood,
consisting of ONLY the cardinal directions.

In the figure above, we see that in the 8-cell neighborhood, the magenta cell in the center has 8
neighbors, and the orange cell is a direct neighbor (one “hop” away).

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 31 of 60

We also see that a cell with 4 neighbors doesn't include the cell to its diagonal, and the same orange cell
is two “hops” away – it's now a neighbor of one of the magenta cells direct neighbors.

This application uses a 4-cell neighborhood, facilitating a final result set that can be interpreted as
left-right turns.

Cell Structure

Each cell contains the following attributes:

Cell Attribute Description

State The current cell state

Metric An aggregate cost from start or finish, used to determine optimum and sub-
optimum paths

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 32 of 60

Application Flow

1. When the solver executes, program flow immediately moves from the outer “machine” logic to
the “inner” frame logic.

2. The frame logic performs a grid sweep, examining each cell. The term “frame” refers to the
entire grid in its current state. A clean “next frame” grid is used as a temporary storage location
to store any changes to the current grid state. We will examine the reasons for this approach
later.

3. Neighbor analysis is performed for each cell – this consists of a tally of the number of neighbor
cells of every state, plus its neighbors' maximum and minimum metric values.

4. Machine state logic dictates which cell state rules are followed. At a minimum, the original cell
state is copied to the new frame. Cell state logic dictates the new cell state, and any changes to
the metric value.
Machine and Cell state logic determine specific code blocks to execute, that may change the
cell's state or other attributes, perform checks, perform calculations, etc...

5. The new cell is copied in to the “next frame”.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 33 of 60

6. Once the grid sweep is complete, a refresh sweep updates the current frame using state and
metric information stored in “next frame”. Along the way, it counts the number of cell state
transitions, called “flips”.

7. Zero flips indicates that cell state logic has stabilized. Machine state logic looks for stable cell
states, along with other logic, to determine if the machine state needs to change.

8. If the machine logic determines that no further processing is required, it moves in to an “End”
state, where the output layer takes over. (See “Solution Overview”, above)

The reason we use a “next frame” buffer to store any cell updates, rather than make updates directly to
the current frame, is that any changes to the current frame during the analysis process causes bias and
corruption.

For example, let's say that a given cell's state changes. This will affect its neighbor's behavior during
the grid sweep, resulting in a bias toward the original cell's new state.

This effect leads to corruption of the entire grid.

By using a “frame buffer” to temporarily store changes to the current frame, we keep the current frame
pristine during the grid sweep analysis, and we create a clean “next frame” that consists of a copy of
the current frame, plus any updates that have been applied.

The machine logic then performs a quick sweep to copy the “next frame” cell states to the current
frame, and count cell state transitions (flips).

Machine State “Seek” (1) Cell Logic

In the “seek” state, empty cells that directly border either start or finish cells are converted accordingly.

This results in a “flood fill” of both start cells and finish cells, that gradually works toward some
common connecting cell.

As each cell is converted, it takes on the metric value of its largest neighbor, plus 1.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 34 of 60

In the figures above, we see the flood fill effect progress simultaneously from both the start and finish
locations. We also see the resulting cell metrics.

Eventually, there will be a “start” cell with at least one “finish” neighbor – this is known as the “join”
cell, which is thrown in to a “flux” state, and the machine state is changed to state 2 (Retrace).

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 35 of 60

In the figure above, we see that we have found the join cell, after a couple more frames have gone by.

If the maze isn't solvable, as in the example below, the machine state logic kicks in, looking for stable
cell logic (no cell flips have occurred in the previous frame), and the machine switches to a failed end
state.

(Example where no solution is possible)

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 36 of 60

Machine State “Retrace” (2) Cell Logic

The “retrace” state attempts to find the most efficient path through the start and finish cells by using the
cell metric values.

If a start or finish cell borders a “flux” cell, and it has a lower metric than all of its “flux” neighbors,
then its new state will be “flux”.

If the cell has a “flux” neighbor with the same or higher metric, it will keep its current state.

In the figure above, we see four examples. In example 1, the “start” (red) cell switches states to “flux”
(magenta), because it borders a “flux” cell, and its metric is lower than all of its flux neighbors. In
example 2, the red cell maintains its state because, although it borders a flux cell, there is already a flux
cell with the same metric (thus, the cell in question is not on the least-cost path). In example 3, we
have a “finish” (blue) cell with one flux neighbor, and it changes states because its metric is lower. In
example 4, the finish cell maintains state because its metric is the same as its flux neighbor.

Starting with our simple example from machine state 1, we can watch the retrace process continue:

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 37 of 60

In the figures above, we start with the join cell, as we transition from machine state 1 to 2. The “flux”
state progresses back to start and finish simultaneously, following only the least-cost path, and ignoring
higher-cost cells.

Eventually, in the final frame, we see that the cell state logic is stable (no flips), because all
neighboring start and finish cells have a higher or equal metric, and are thus ignored.

Once the cell state logic is stable, the machine switches to state 3 (vertical optimizer).

Machine State “Optimizers” (3 and 4) Cell Logic

After retrace, the resulting set of flux cells represent the set of all equal-cost solutions, and thus
optimization is necessary, to pick a single path.

For example, think of a car that can only make left or right turns, taking any efficient path from the red
square to the blue square, in the figure above. Regardless of what route the car takes, it must cross
exactly 5 white squares.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 38 of 60

Likewise, the red path, green path, and blue path are all of equal length (and there are many more
possible paths).

The purpose of the vertical (machine state 3) and horizontal (machine state 4) optimizers is to eliminate
duplication, resulting in a one-cell-width path from start to end.

Each requires a discreet machine state, because they can't run concurrently – running both optimizers at
the same time results in shearing, which creates gaps in the final pathway.

Therefore, from a machine state perspective, we perform all possible vertical optimizations, look for a
stable cell state, and then switch to the horizontal optimizer.

Once the horizontal optimizer completes (stable cell logic), the machine state switches to “end
(success)”

Part 1 – Eliminate unused Start and Finish cells

At this point, we know that the set of flux cells contains multiple possible solutions, and we no longer
need any remaining “start” or “finish” cells (states 2 and 3, respectively), so we set them to state 5
(“dead”)

Since vertical and horizontal optimization occur separately, we only need to perform this part once –
during vertical optimization. There's no need to run it again during horizontal optimization.

Part 2 – Bridge Logic

In the vertical optimizer, a “bridge” is a cell that has nothing to the left or right of it, thus it's connecting
one or more cells above, to one or more cells below, acting as a vertical “bridge”.

Likewise, the horizontal optimizer detects horizontal bridges, with nothing above or below, and thus
the cell connects one or more cells to its left to one or more cells to its right.

The figure below specifies some examples of bridges:

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 39 of 60

Anything detected as a “bridge” is set to “path” state:

Part 3 – Detect Shearing

Before we discuss shearing, let's discuss the optimization process.

Because the purpose of optimization is to eliminate redundancy, we look for a cell that borders an
empty cell on one side, and another flux cell on the other side. We're looking for two adjacent flux
cells, and possible optimization can occur from the direction of the empty cell, facing a stack of two or
more flux cells.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 40 of 60

Candidates that might be able to be optimized include the following:

• If a cell has air above, but another cell below, it is a candidate for downward optimization

• If a cell has air below, but another cell above, it is a candidate for upward optimization

• If a cell has air to the left, but another cell to the right, it is a candidate for right optimization

• If a cell has air to the right, but another cell to the left, it is a candidate for left optimizations

Once we've identified that a cell could be optimized, we need to check for shearing, which is the
condition where corners get “sheared” off.

The figure above demonstrates all eight possible shearing conditions.

If shearing is detected, as the figure indicates, a corner cell is immediately converted to “path” state to
avoid over-optimization.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 41 of 60

In our example from bridge detection above, shearing detection finds two more cells.

Part 4 – Optimize

Once we know that a cell is not a bridge, and not a shear point, we can try to optimize it.

The last step is to compare its metric with its neighbor – the less expensive of the two survives.

The figure above is the result of one frame of vertical optimization. We clearly see that more bridges
and corners have formed. Obviously, there will be some artifacts on the right-hand side, due to the fact
that this is an example chosen for clarity, and not a realistic solution set. The example above will result
in “serif” nodes in the upper and lower right-hand regions that would not normally form from a
properly-created solution set.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 42 of 60

Part 5 – Convert remaining Flux to Path

The final part of the optimizer converts any remaining “flux” cells that have survived both the vertical
and horizontal optimizer, to “path” state.

This final step is very straightforward – for any “flux” cell, simply change state to “path”.

State Logic Framework

It's possible to combine the machine and cell state logic in to a single framework.

The normal approach would be to use branching logic for the machine state, with nested branching
logic for each applicable cell state:

select machineState
case 1

'* Machine State 1 *
select CellState

case 0
'* Cell State 0
case 2
'* Cell State 2

case 2
'* Machine State 2 *
select CellState

case 2
'* Cell State 2
case 3
'* Cell State 3

(etc...)

A better and more flexible approach is to multiply the machine state by some constant c, adding the cell
state. This effectively gives us a single base c value that simultaneously represents the machine and
cell states, and provides the opportunity to consolidate the branching logic:

c = machineState * 1000 + cellState

select c
case 1000
'* Machine State 1, cell state 0
case 1002
'* Machine State 1, cell state 2
case 99001
'* Machine State 99, cell state 1
case 2002
'* Machine state 2, cell state 2
case 2003
'* Machine state 2, cell state 3
(etc...)

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 43 of 60

By taking this approach, the same code blocks can be used across machine and cell states:

select c
case 1000, 99001
'* Fill logic *
case 1002
'* Detect start / end overlap
case 2002, 2003
'* Retrace logic
(etc...)

This approach greatly increases both the overall efficiency, and the flexibility of the design.

Sample Screens Showing Solver Process

The figure above shows the flood fill (seek) state in progress. Each “frame” expands the red and blue
domains by one cell. The diagonal pattern is an artifact of the 4-cell neighborhood, but aids in ensuring
that neighboring cells always have a different cost metric, and supports producing a final solution set
that could be interpreted in to left-right directions.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 44 of 60

The figure above shows the retrace state in progress. This process identifies a set containing all
equivalent solutions.

The figure above shows the vertical optimizer running. It has already identified several bridges and
corners (possible shearing points), and converted them to “path” status.

Gray cells are dead cells – cells that were “start”, “finish”, or “flux” state, and have been eliminated
because they are either not part of the solution set, or they have a more efficient neighbor.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 45 of 60

The figure above shows the final solution after optimization. All unnecessary “start”, “finish”, and
“flux” cells have been eliminated, and all remaining “flux” cells have been converted to “path”.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 46 of 60

Sample Output Layer

The figure above shows the final solution set overlaid on top of the original maze bitmap.

The purpose of the output layer is to produce a graphical or data representation of the solution set – for
example, the output layer could be used to produce a text or other data file containing the coordinates
for all “path” cells.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 47 of 60

Solution Analysis
In this section, we will look at the project goals, and qualify whether those goals have been met by the
solution design.

Interpret a Bitmap of a Hand-Drawn Maze

This document has demonstrated both theory and application:

Below, the algorithm is demonstrated, running against a circular maze – typically very difficult for a
machine to solve, because the lack of perpendicular walls and well-defined intersections defy node
interpretation and analysis. In addition, this maze was specifically constructed to defy being solved by
the left-hand rule:

In the following example, we have a more complex maze, with lighting, focus, and color variations:

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 48 of 60

Convert a Bitmap in to a Cell Array

This document has demonstrated both theory and application

In the image analysis process, we use average pixel values across each cell to find the red and blue start
and finish points (respectively).

We find the “reddest” and “bluest” cells by converting color differences in to components of a 2D
vector, and then applying a weighting function against the magnitude, based on angular distance from
an ideal (equidistant from blue and green in the case of red, or equidistant from red and green in the
case of blue).

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 49 of 60

We use a large “cell neighborhood” to determine local contrast by comparing a cell's minimum contrast
value to the average contrast of the cell's neighborhood. If the difference is above a specified
threshold, the cell becomes a wall, or empty, otherwise.

Computationally Efficient

We've covered the image analysis process, which has the same fixed computational cost regardless of
the image. The first pass aggregates individual pixels in to cells, and the second pass conducts the wall
analysis.

Therefore, we'll focus on the machine and cell state logic, as the key driver of computational cost.

As discussed, we can define a “meta state” for each combination of machine state and cell state, by
multiplying the machine state by a constant and adding the cell state. This allows for a simplified logic
framework, and precludes any looping within the machine / cell state logic code blocks.

For a minimum path length of n cells, the following cycles are required:

• n/2 frames in the “flood” state (1). This is because the flood fill occurs from both the start and
finish points simultaneously, and both advance by one cell per frame.

• n/2 frames in the “retrace” state (2). This is because the retrace process follows a path from the
join cell back to both start and finish simultaneously.

• The number of vertical optimization frames v plus the number of horizontal optimization frames
h can't exceed the path length n.
n>=(h+v)
The total solution space prior to optimization has the same number of segments and length as
the final pathway. For example, if a vertical segment is 20 x 5 cells, it requires no more than 20
cells to optimize. Each additional segment (horizontal or vertical) requires the same.

Therefore, the entire solution requires no more than 3n frames, where n is the minimum path
length.

From a complexity standpoint, let's determine the longest path that can be practically formed by an n x
n cell array:

• The entire maze is surrounded by a 1-cell-wide wall

• Wall thickness can be assumed to be 1 cell

• Path thickness can be assumed to be at least 2 cells – if walls and pathways were all 1 cell wide,

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 50 of 60

other algorithms, such as dead-end-filling CA algorithms, would be more efficient.

• No dead-end paths – the entire maze must be used.

• Start and end points are separated by the longest cell-count distance possible

The resulting shape is a zig-zag. Here is a sample 16x16 “maximally-convoluted” maze and its
solution:

The shortest path can be defined as:

• (n-1)/3 total horizontal segments, h. This is because each path (of width 2) is bordered by a
wall of width 1 (2 + 1 = 3).
h = (16-1)/3 = 5

• Each h segment will have a cell count hc of n-3. This is because each vertical path has 2 empty
cells, ONE of which must be filled, bordered by two wall cells. 2 + 2 = 4 – 1 = 3.
hc = 16-4 = 12

• Each h segment is connected to the next h segment by a v segment.

• There are h-1 v segments. A v segment joins adjacent pairs of h segments, and there are only h-
1 adjacent pairs.
v = h-1 = 5-1 = 4

• Each v segment cell count vc is the width of the pathway – 2.
vc = 2

• ONE extraneous cell ec must be added to the solution, to accommodate the asymmetric
orientation of start and finish.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 51 of 60

ec = 1

The final path is therefore:

h * hc + v * vc + ec

Defined in terms of n, the longest path through an n x n maze with wall thickness of 1 and path
thickness of 2 is:

(n-1)/3 * (n-4) + ((n-1)/3-1) * 2 + 1
n(n-1)/3 – 4(n-1)/3 + 2(n-1)/3 – 2 + 1
(n-2)(n-1)/3 – 1
(n^2 – 3n + 2) / 3 - 1

In our example above, the minimum path length is:

(16^2 – 3*16 + 2)/3 – 1

(256 – 48 + 2)/3 -1

210/3 -1

70 – 1 = 69

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 52 of 60

Ignore Shape, Scale, and the Requirement to Define Nodes

As we've seen, pathways are determined dynamically, and the algorithm adapts to any shape or style of
maze.

The one requirement is that an empty pathway must be generally 2 cells wide, meaning that any shift
still allows a 1-cell-width passageway.

Effectively, the cell size must be 1/2 to 1/3 of the width of a passage in order to have sufficient
resolution, to prevent a dead end caused by aliasing.

Although the cell size can be reduced, yielding a greater effective resolution, the limit beyond which,
this ceases to be beneficial is where the cell size approaches 1 pixel.

Short of this, any bitmap that is properly interpreted with a clear start and finish position, and clear wall
and passageway definitions, can be effectively and efficiently solved by the described algorithm.

Produce a Discreet Result Set

The described solution produces a 1-cell-wide pathway with two notable exceptions:

1. A “knob” attached to the join cell. This is an artifact of legitimizing a less-optimum path by
assigning a high metric to the join cell.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 53 of 60

This artifact could be eliminated through additional optimization – it's effectively the only
“path” cell with one neighbor, other than the true start cell and the true finish cell.

2. Bifurcation caused by errant, detached wall artifacts.

In the above example, a wall artifact appears as a random dot in the middle of a pathway.
During the retrace stage, we see that the dot is in the middle of the solution set. In the third
figure, the final path bifurcates around the artifact.

This can only happen in the rare condition that both pathways are of equal cost. To eliminate
this artifact, the algorithm should look for a “path” node with three “path” neighbors. Two of
the neighbors should be of equal metric, and one should be randomly eliminated.

Using the dead-end fill approach, any cell (short of the true start and end) can then be
eliminated, resulting in one of the two paths being slowly killed off.

For now, the solution design does not incorporate optimization to eliminate either of these two artifacts.

Presumably, the next step would be vector analysis, and both of these artifacts can be more efficiently
eliminated as part of vector analysis, which is currently beyond the scope of this project.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 54 of 60

Implementation
The solution design, as described in this document has been implemented as a practical application in
the form of an Android app, available for download to any valid Android platform at the following
location:

https://play.google.com/store/apps/details?id=com.DragonAllen.MazeBot

This solution is a re-write of a win32 implementation designed in 2013. The “windows”
implementation had little practical benefit, other than to illustrate the solution design.

As an Android app that runs on your phone, you can aMAZE your friends at parties!

Here is a link to a YouTube video that shows the application in action:

https://youtu.be/xmxnEz6fOeU

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 55 of 60

https://youtu.be/xmxnEz6fOeU
https://play.google.com/store/apps/details?id=com.DragonAllen.MazeBot

Real-World Applications
In addition to solving hand-drawn mazes, this solution could be leveraged in several different ways:

• GIS (Graphical Information System) data is effectively a node map overlaid on top of a
graphical bitmap. For example, when you go to Google Maps and ask for directions, you are
leveraging a very sophisticated GIS. MazeBot can potentially provide on-the-fly directions
where GIS data is unavailable.

• On the electronic battlefield, GPS (Global Positioning System) data may be unavailable due to
blocking or jamming. Mazebot can be trained to interpret bitmaps of land maps, and provide
optimal routing vectors.

• MazeBot can be modified to provide optimal routing for automated machine tools.

• MazeBot is really fun at parties!

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 56 of 60

Future Works

MazeBot Enhancements

The following are possible enhancements to the solver algorithm

• Resolve “join knob”. The “join knob” is an artifact where the join cell has a higher metric
than the surrounding cells, and a less-optimal cell, not part of the “path” solution has a lower
metric, and is therefore considered part of the final solution.

A final optimizer phase can look for cells with one neighbor, excluding start and end, and
exclude them.

• Resolve bifurcation. A “path” cell with three neighbors represents a split in the path. This is
caused by a rare situation where a disconnected “wall” artifact sits in the middle of a pathway
and also happens to lie across the optimal path. The result is that both sub-optimal paths
surrounding the artifact have an equal cost, therefore, both are valid solutions.

To resolve bifurcation, the algorithm must identify equal path metrics, and then use a dead-end
filling algorithm to eliminate the redundant pathway.

• The optimization steps are a complete kludge. In the original win32 implementation, I
experimented with various 4 and 8 cell neighborhoods, various interim states, “parent cell”
attribute, and the like, but all of those approaches yielded a sub-optimum outcome.

Revisiting an approach based solely on cell attributes and neighbor count, even if it necessitates
interim states, would be more flexible and less convoluted.

MazeBot's key parameters were experimentally-determined, and are implemented as constants within
the application. A future version of MazeBot might implement a control panel so that the user can
adjust these values:

• Cell Size

• Wall Threshold

• Contrast Neighborhood Size

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 57 of 60

The initial version of MazeBot is designed to minimally demonstrate the ability to capture and solve a
maze, implementing the described solver algorithm.

MazeBot is not intended to be a full-blown image editor, but some minimal image editing functions
would make it more usable:

• Ability to add “red” start point and “blue” finish point

• Ability to crop the image

• Ability to define arbitrary walls

• Ability to surround the image with a black box

• Ability to erase artifacts

All of these can be implemented as simple touch-and-drag functions.

Currently, the output layer only performs one function – it displays the raw maze bitmap with an
overlay of the final pathway. The output layer can perform many other functions, such as:

• Ability to save a bitmap of the “solved” maze

• Ability to save the data set, either of the entire grid, or just the pathway, as a file

• Add a vector analysis layer that's capable of “vectorizing” the final pathway

Other Works

The following are possible extensions of the logical approach used by MazeBot

• Dynamic image analysis, such as edge detection or pattern recognition

• MazeBot is NOT an “AI” (Artificial Intelligence) application, but the concepts taken from
MazeBot could be useful AI building blocks.

• Multiple, independent, but interconnected cell layers could be used for more sophisticated
processing. Each cell layer's current state and attributes would be available to the layer above
and below it, allowing each layer to perform aggregate analysis of the layers below it.

In general, cell-based image analysis could be useful in many practical ways:

• Meteorology - Analyze time-lapse weather radar images to provide hyper-accurate, localized,
short-term weather predictions, such as predicting tornados.

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 58 of 60

• Astronomy – Analyze time-laps telescopic images for motion and other changes

• Cartography – Analyze map images to generate node (GIS) data

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 59 of 60

Conclusion
In this document, we've demonstrated a practical method to solve hand-drawn mazes using cellular
automata and state machine logic.

• The application architecture is defined in layers, where each layer performs a specific function
and passes the output to the next layer.

• Image acquisition, optimization, and analysis are handled by the first few layers. Once the grid
array of cells is properly initialized, it's then passed along to the solver.

• The solver implements cellular automation driven by a machine / cell state framework that
includes code blocks tied to specific states.

• Each “outer” state of the solver defines a particular goal or phase of the machine, while the
“inner” state logic drives the cell states.

• For a given machine state, cell transitions in each frame (grid sweep) are counted, and are
known as “flips”. Zero flips indicates stable cell logic, and is used to govern overall aspects of
the machine state.

• Each cell, in addition to its state, has a distance metric derived from its surrounding neighbors'
highest state, plus 1.

• Once a connecting path is identified from start to finish, the retrace process eliminates all sub-
optimum cells based on the distance or cost metric, resulting in a set of multiple possible
solutions of equal distance or cost.

• Two optimization steps eliminate redundant solutions, yielding a one-cell-wdith path
connecting the maze start to its finish.

Cellular automata coupled with state machine logic provides a simple and flexible framework for
image analysis, and other distributed problem-solving applications.

To view MazeBot in action, visit the YouTube Video:

https://youtu.be/xmxnEz6fOeU

To download MazeBot to your Android device from Google Play, visit Google Play:

https://play.google.com/store/apps/details?id=com.DragonAllen.MazeBot

Solving Irregularly-Shaped Mazes Using Cellular Automata and State Machine Logic
J. Parr, 2/16, updated 3/2/2016, v 1.1 Page 60 of 60

https://play.google.com/store/apps/details?id=com.DragonAllen.MazeBot
https://youtu.be/xmxnEz6fOeU

	Solving Irregularly-Shaped Mazes Using Cellular Automata With State Machine Logic
	Executive Summary
	Version History
	Overview of Existing Solutions
	Node / Graph Analysis
	Flood Fill
	Left-Hand Rule
	Existing Cellular Automata Solution

	Background Information
	State Machine Logic
	Cellular Automata

	Project Goals
	Solution Overview
	Solution Details
	Image Analytics
	Acquisition – Layer 1
	Pixel Analysis by Cell – Layer 2
	Cell Contrast Analysis – Layer 2
	Cell Color Analysis – Layer 2
	Wall Analysis – Layer 3
	Overlay Start and Finish – Layer 3
	Sample Processed Maze Image

	Key Parameters
	Application (Machine) States
	Cell State Logic
	Overview of Cell States
	Cell Neighborhood
	Cell Structure
	Application Flow
	Machine State “Seek” (1) Cell Logic
	Machine State “Retrace” (2) Cell Logic
	Machine State “Optimizers” (3 and 4) Cell Logic

	State Logic Framework
	Sample Screens Showing Solver Process
	Sample Output Layer

	Solution Analysis
	Interpret a Bitmap of a Hand-Drawn Maze
	Convert a Bitmap in to a Cell Array
	Computationally Efficient
	Ignore Shape, Scale, and the Requirement to Define Nodes
	Produce a Discreet Result Set

	Implementation
	Real-World Applications
	Future Works
	MazeBot Enhancements
	Other Works

	Conclusion

