
Share Files Securely
Justin Parr, 10/2013

Abstract

This document outlines a method for encoding, storing, and transmitting a file to one or more
recipients securely by creating multiple bit streams that essentially contain no viable content, but
by which the recipient can re-construct the original content.

This is achieved by using a symmetric operation to decompose a “high value” byte sequence
(such as a file containing confidential data) in to blocks of random bit strings, and using hash
“label” values to retrieve known bit blocks in order to reconstruct the original high-value byte
sequence, based on instructions and label values contained in a “blueprint” string sequence.

Technical Assertions:
● A symmetric bitwise operation, such as XOR or EQV can be used to split a high-value bit

sequence in to two random sequences that can be recombined in to the original sequence

● A hash function can be used to generate hash “label” values for a given bit sequence, that
can be used as an index for storing and retrieving a specific bit sequence.

● Salt Data can be used to generate multiple, unique hash values for the same bit sequence,
and can be used to generate multiple, unique index functions.

● A blueprint string containing hash values and assembly instructions can be used to locate,
download, transform, and assemble various blocks of random bit strings in order to
reconstruct the original high-value bit sequence.

● Using overlapping hash indices, multiple equivalent blueprints can be constructed that
represent the same original bit sequence. This allows mutation and randomization when
sharing blueprints.

Justin Parr Draft v0.9.2, 10/2013 Page 1 of 32

Methodology

1. Demonstrate that a “high value” bitstream can be encoded as 2 or more random bit
sequences plus a blueprint that can be leveraged to reconstruct the original high-value
bitstream on the fly.

2. Provide a high-level algorithm for information-sharing using the above principle.

3. Review a legal analysis in the context of liability and plausible deniability with respect to
encoding, storing, transmitting, or receiving “high risk” confidential content.

4. Review countermeasures that either complicate cryptanalysis or support plausible
deniability.

5. Legal and Technical comparison of this method against other file transfer / file sharing
mechanisms.

Justin Parr Draft v0.9.2, 10/2013 Page 2 of 32

Symbols

Symbol Definition
+ Boolean OR (returns “1” if either input is 1)
+ Boolean XOR (returns “1” only if one input is 1 and the other is 0)
x Boolean AND (returns “1” only if both inputs are 1)
= Equivalence function (returns “1” only if both inputs are the same)
/= Not Equal
- Inverse, -A = NOT(A) (returns “1” if input is 0, and “0” if input is 1)

f() Function “f”
-f() Inverse of function “f”, for example: -f(f(x))=x

Justin Parr Draft v0.9.2, 10/2013 Page 3 of 32

The Associative Nature of the XOR Boolean Function

XOR is the “eXclusive OR” Boolean function, yielding 1 in the event that A and B inputs are
different, and 0 in the event that A and B inputs are the same.

A B A + B
XOR

0 0 0
0 1 1
1 0 1
1 1 0

The Equivalence function yields 1 where A and B are the same, and 0 where A and B are
different, and is therefore equal to the negated output of A + B:

A=B = -(A+B)

Truth table:

A B A x B A + B A + B A = B -A
AND OR XOR EQU NOT

0 0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1

When the output of XOR is combined with one of its inputs, XOR yields the OTHER input:

A+B = Z,
Z+A = B, and
Z+B = A

A B Z = A + B A = Z + B B = Z + A
0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

Since the Equivalence function is equal to the negated output of XOR, the Equivalence function
exhibits the same associative property.

Justin Parr Draft v0.9.2, 10/2013 Page 4 of 32

Decomposing A “High-Value” Bitstream

Given a “high value” bit stream, S, with a label of “Q01” (the labels will be discussed later), S
might represent the bit sequence of some confidential data.

S = Significant (“High Value”) bit sequence
0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0

Label = Q01

F, whose label is “Q02”, represents a random factor, which is a random bit sequence with the
same length of S

F = Random Factor
0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1

Label = Q02

Z, whose label is “Q03”, is calculated as S+F, where XOR is applied in a bitwise fashion. For a
given bit position “b”, Zb = Sb+Fb

Z = XOR output
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1

Label = Q03

Because F is random, Z is therefore random.

Neither F nor Z contain S, due to the fact that both F and Z are random. Only F and Z together
with the XOR function (combined) can re-create S – if any component (F, Z or XOR) is missing,
S can’t be reconstructed.

Likewise, either F or Z could be XOR components of an entirely different bit stream, other than
S.

Given Z, and another high-value bit sequence A:
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

There exists a bit sequence B that is also random, such that Z+B = A
1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1

Note that because F is random, Z is random, and therefore B is also random, and B can’t be
related to S nor A.

Assuming that F is “really random” (not machine-pseudorandom), the relationship between Z
and S will defy cryptanalysis, as it is as secure as a “one time pad” cipher, which, excluding
human error or compromise, is considered to be “perfectly secure”.

The frequency with which Z or F are used to decompose other secure streams is directly relevant
to the chance that enough information is available to an attacker, to mount an attack against S.

Justin Parr Draft v0.9.2, 10/2013 Page 5 of 32

Using a bijective function to label bit sequences

A bijective formula has exactly one return value for each input value, and vice-versa. So for any
given “x”, there is only one value of b, such that b=f(x), and likewise, only one x such that x=
-f(b). For the purpose of this document, a bijective function can be implemented as a lookup
table.

Using a bijective index function, q(), each unique bit sequence Bx can be labeled as Qx, where:

Qx=q(Bx)

Due to the bijective nature of q():

Bx=-q(q(Bx)

and

Qx=q(-q(Qx))

Using the sample bit streams listed previously, let's define the function, q() as follows:

String B q(B)
S (high-value) 00011011 00001111 11110000 11011000 Q01

F (random) 01011100 11110000 10001001 11100001 Q02
Z (XOR product) 01000111 11111111 01111001 00111001 Q03

For clarity,

q(00011011 00001111 11110000 11011000) = Q01

-q(Q01) = 00011011 00001111 11110000 11011000

q(-q(Q01)) = Q01

-q(q(00011011 00001111 11110000 11011000)) =
00011011 00001111 11110000 11011000

Since we use the variable “S” in place of the high-value bit stream:

S = 00011011 00001111 11110000 11011000

The above can be expressed more conveniently as:

q(S) = Q01
-q(Q01) = S
q(-q(Q01)) = Q01

Justin Parr Draft v0.9.2, 10/2013 Page 6 of 32

-q(q(S)) = S

Since any bitwise operation, including XOR and EQU can operate on a bitstream, the
relationship between S, F, and Z can be expressed as follows, using q():

-q(Q03) = -q(Q01) + -q(Q02)

Therefore:

Q03 = q(-q(Q01) + -q(Q02))

Since XOR allows S, F, and Z to be interchanged, the following is also true:

Q01 = q(-q(Q03) + -q(Q02))

In a practical implementation, q() would be a lookup table, and a unique “label” Qx would be
generated using a one-way hash algorithm h(), such that for every value of “B”:

Qx = h(Bx)

One-way hash algorithms are not reversible, and would depend on q() and -q() (the index
function) to find the original value of Bx.

From a practical perspective, h() can be implemented as any one-way hashing function (“secure”
or otherwise) that is guaranteed to provide sufficient uniqueness to differentiate various bit
streams, and includes MD5 or SHA1.

Justin Parr Draft v0.9.2, 10/2013 Page 7 of 32

Using Salt Data To Generate Multiple, Unique Index Functions

Using the standard MD5 hash algorithm as an example for the basic index function q(), hashing
the high value bit sequence “S” results in the following hash value:

Description Bit Sequence
S (high-value) 00011011 00001111 11110000 11011000
MD5 Hash* 7d7714e4b82169a38213bda47bdad77a

*MD5 of the string value, not binary – “I said NO SALT in the margaritas...”

Using a salt value, S can be transformed prior to hashing:

Description Bit Sequence
S (high-value) 00011011 00001111 11110000 11011000

Salt B=10101010 10101010 10101010 10101010 10101010
XOR (S + B) 10110001 10100101 01011010 01110010
MD5 Hash* b58de1440afb7b6d8378ad74efef06ed

Multiple salt values can be associated with a given index function:

Function Salt Pre-hash Bit Sequence (XOR S + B) Label
S (high-value) 00011011 00001111 11110000 11011000 n/a

Index q() None 00011011 00001111 11110000 11011000 Q
Index r() 10101010 10110001 10100101 01011010 01110010 R
Index m() 10010101 10001110 10011010 01100101 01001101 M

In this regard, for a given salt length L, the number of unique index functions that can be created
is 2^L, where B=00000000 would result in the index function q() above (no transformation prior
to hashing)

Justin Parr Draft v0.9.2, 10/2013 Page 8 of 32

Encoding S

In this theoretical example, the “high-value” bit stream (our confidential data) is S:

S = 00011011 00001111 11110000 11011000

F is a random bit string, in this case:

F = 01011100 11110000 10001001 11100001

The random bit string can be generated using a pseudorandom number generator function, or can
be digital measurements obtained from a random source (e.g. instantaneous CPU utilization, heat
measurements, and the like)

Given F, Q02 can be obtained using q():

Q02 = q(F)

Z and Q03 can be obtained as follows:

Z = S + F

Q03 = q(Z)

At this point, S can be expressed as:

S = -q(Q02) + -q(Q03)

To reconstruct S, there must be knowledge of the index function q() and the relationships:

Q02 = q(F)
Q03 = q(Z)

As well as the function that defines the relationship between F and Z (which is XOR)

The index function q() can be seeded with many false values of Qn where the associated bit
string is not used to reconstruct S, or perhaps Qn is part of another high-value string, T.

Again, from a practical standpoint, q() can be populated with random or pseudorandom bit
strings, and the associated labels can be generated using the legitimate hash function h(). This
would prevent an attacker from “weeding out” false bit strings by calculating Qn for each Bn,
and comparing against q(Bn).

Finally, a blueprint of S can be constructed using the tokens that identify the components used to
re-create S:

Justin Parr Draft v0.9.2, 10/2013 Page 9 of 32

S = “q,Q02,XOR,q,Q03”

In this example:

q Identifies the index function -q() used to convert Q02 in to a bitstream
Q02 The label of the first factor. (sequence is inconsequential)
XOR The logic function used to convert to bit strings back in to S
q Identifies the index function -q() used to convert Q03 in to a bitstream
Q03 The label of the second factor.

Note that since Q02 and Q03 are not sequence dependent, they could be listed in any order,
meaning Q02 could either be related to F or Z, and the same for Q03. The random and derived
factors can be listed in the blueprint in any order.

Q02 and Q03 could conceivably use two different index functions (possibly from two different
servers, as an example)

Other transformation functions such as EQU could be used in place of XOR. Unary operations
can be added to further convolute bit strings by using bit shifting, inversion, or other “well
known” transformations.

Justin Parr Draft v0.9.2, 10/2013 Page 10 of 32

Block Encoding

Although the entire bit string S can be encoded as one block, the value of doing this diminishes
for large bit strings, since the amount of data in the index function q() is equal to 2 times the
length of S, and also increases the chances that compromising q() could result in S subsequently
being compromised.

A better approach is to break S down in to fixed-length blocks, resulting in smaller
corresponding blocks for F and Z, that are easier to store and transfer, and results in more table
entries for q(). Since the sequence of a particular block Qn can't be determined within the bit
string S, a brute force attack would not only have to compare all values of q(), but all possible
sequences of all values of q() in order to obtain S, which assumes S was known in advance, or
else you would not have an end-state to compare against.

Using the example listed previously, and an arbitrary block length of 8 bits, a sample encoding
process looks like this:

1. Start with the “high-value” bit string, S

00011011 00001111 11110000 11011000

2. Break S in to 8-bit blocks:

Blocks of S Bit String
Block 1 of S (SB1) 00011011
Block 2 of S (SB2) 00001111
Block 3 of S (SB3) 11110000
Block 4 of S (SB4) 11011000

3. Generate random data, F, for each block of S:

Blocks of F Bit String
Block 1 of F (FB1) 01011100
Block 2 of F (FB2) 11110000
Block 3 of F (FB3) 10001001
Block 4 of F (FB4) 11100001

4. Calculate Z using XOR function from S and F:

Blocks of Z Bit String
Block 1 of Z (ZB1) 01000111
Block 2 of Z (ZB2) 11111111
Block 3 of Z (ZB3) 01111001
Block 4 of Z (ZB4) 00111001

Justin Parr Draft v0.9.2, 10/2013 Page 11 of 32

5. Generate labels and populate the index function, q():

Label
q()

Bit String
-q()

Purpose

Q06 01011100 Block 1 of F (FB1)
Q07 11110000 Block 2 of F (FB2)
Q08 10001001 Block 3 of F (FB3)
Q09 11100001 Block 4 of F (FB4)
Q11 01000111 Block 1 of Z (ZB1)
Q12 11111111 Block 2 of Z (ZB2)
Q13 01111001 Block 3 of Z (ZB3)
Q14 00111001 Block 4 of Z (ZB4)
Q16 01100001 Random Filler
Q17 01001110 Random Filler
Q18 11011101 Random Filler
Q19 01001111 Random Filler
Q20 00000110 Random Filler
Q21 00011000 Random Filler
Q22 10001110 Random Filler
Q23 01010110 Random Filler
Q24 10000011 Random Filler
Q25 11011010 Random Filler

6. Generate blueprint for each block of S:

Block Blueprint for Block
SB1 q,Q06,XOR,q,Q11
SB2 q,Q07,XOR,q,Q12
SB3 q,Q08,XOR,q,Q13
SB4 q,Q09,XOR,q,Q14

7. Generate combined “final” blueprint for S by concatenating block-level blueprints

S = q,Q06,XOR,q,Q11;q,Q07,XOR,q,Q12;q,Q08,XOR,q,Q13;q,Q09,XOR,q,Q14

The final “blueprint” string has nothing to do with the original bit string, S

In a practical implementation, the block labels would be non-deterministic, and “real” index
rows would not be grouped together – they would be randomly-interspersed with the junk,
random data. In this simple example, the block labels are linear and the “real” index rows are
grouped together.

Additionally, the block length would have to be significantly larger than the example, in order to
make the blueprint as efficient as possible. In a practical implementation, the hash function
could be MD5 (cryptographic security is not required) or SHA1, and the block size could be 2k
(2048 bytes) or larger. MD5 checksums are 16 bytes long, so the “blueprint” string for each

Justin Parr Draft v0.9.2, 10/2013 Page 12 of 32

block of S would be 32 bytes, plus the encoding for the index function q(), the transformation
function XOR, and possibly location hint data, for a total of 50 bytes or less per block.

In theory, the index function q() would be tied to a specific repository location (such as a URL),
and could be defined early in the blueprint string. “Index hint” data might differentiate between
multiple repositories on the same server, or different classes of data blocks. For example,
random block data could be stored within a file, such as an image on a website, and the “location
hint” might be a byte or block offset within the file.

Alternately, various repositories for various index functions could be stored centrally in a
directory... knowing which index function relates to which repository, and the location (or
multiple locations) for a given repository could be stored in the directory, then referenced within
the blueprint string.

Justin Parr Draft v0.9.2, 10/2013 Page 13 of 32

Blueprint Mutation / Permutation

A given bit block might be indexed by multiple index functions in order to allow blueprint
mutations. For example, a server that hosts two index functions, q() and r(), and has every bit
block indexed by both q() and r(), might have a repository that looks like this:

Label
q()

Label
r()

Bit String
-q() , -r()

Purpose

Q06 R99 01011100 Block 1 of F (FB1)
Q07 R98 11110000 Block 2 of F (FB2)
Q08 R97 10001001 Block 3 of F (FB3)
Q09 R96 11100001 Block 4 of F (FB4)
Q11 R95 01000111 Block 1 of Z (ZB1)
Q12 R94 11111111 Block 2 of Z (ZB2)
Q13 R93 01111001 Block 3 of Z (ZB3)
Q14 R92 00111001 Block 4 of Z (ZB4)
Q16 R91 01100001 Random Filler
Q17 R90 01001110 Random Filler
Q18 R89 11011101 Random Filler
Q19 R88 01001111 Random Filler
Q20 R87 00000110 Random Filler
Q21 R86 00011000 Random Filler
Q22 R85 10001110 Random Filler
Q23 R84 01010110 Random Filler
Q24 R83 10000011 Random Filler
Q25 R82 11011010 Random Filler

A server might offer a translate function:

http://somesite/TranslateIndex.php?q=Q01&f=r
(might return “R99”, the equivalent of r(-q(Q06)))

Given the two index functions q() and r() listed above, the following bit strings are all
equivalent:

-q(Q06) -q(Q07) -q(Q08) -q(Q09)

-r(R99) -r(R98) -r(R97) -r(R96)

-q(Q06) -r(R98) -q(Q08) -r(R96)

(etc...)

In this example, there are 4 blocks and 2 index functions, yielding 2^4 = 16 possible unique
blueprints.

Justin Parr Draft v0.9.2, 10/2013 Page 14 of 32

This allows an individual who shares the blueprint to “mutate” the blueprint by randomly
translating block labels from -q() to -r() in order to obfuscate the blueprint. Using just two index
functions, with an example bitmap consisting of 2,000 blocks, the number of unique blueprints
that represent the same bitmap would be 2^2000, which would easily defy signature-based
detection at network gateways and when performing server scans.

Advanced server functionality might even offer a “mutate” function, that stores a “meta
blueprint” and always returns a unique, mutated version of the original for each download
request.

Justin Parr Draft v0.9.2, 10/2013 Page 15 of 32

Storage and Transfer of Encoded S

Transferring the encoded high-value bit string “S” depends on neutral third-party servers to host
the index function q(), which includes the bit strings and associated labels for all blocks
necessary to reassemble S.

The bit strings and labels become “public” information, while the blueprint itself (and perhaps a
meta-map of how to interpret the blueprint) would be transferred from peer to peer.

From an implementation standpoint, a simple server script can be written, that performs a
database lookup based on a single parameter (“q”):

http://someserver/qindex.php?q=Q08

In our example, this index URL with the q parameter of Q08 would return the byte “10001001”
from our simple, sample lookup table.

Other functions might point to mirror sites containing the same index function, or to a global
directory URL where additional repositories (index functions) can be located.

Ideally, each factor of S (blocks of F and Z) would be stored on separate servers, and optimally,
many different servers.

q1(x) = http://server1/qindex.php?q=x

q2(x) = http://someotherserver2/qindex.php?q=x

Server 1 database:

Label
q1()

Bit String
-q1()

Purpose

Q06 01011100 Block 1 of F (FB1)
Q07 11110000 Block 2 of F (FB2)
Q08 10001001 Block 3 of F (FB3)
Q09 11100001 Block 4 of F (FB4)
Q21 00011000 Random Filler
Q22 10001110 Random Filler
Q23 01010110 Random Filler
Q24 10000011 Random Filler
Q25 11011010 Random Filler

Server 2 database:

Justin Parr Draft v0.9.2, 10/2013 Page 16 of 32

Label
q()

Bit String
-q()

Purpose

Q11 01000111 Block 1 of Z (ZB1)
Q12 11111111 Block 2 of Z (ZB2)
Q13 01111001 Block 3 of Z (ZB3)
Q14 00111001 Block 4 of Z (ZB4)
Q16 01100001 Random Filler
Q17 01001110 Random Filler
Q18 11011101 Random Filler
Q19 01001111 Random Filler
Q20 00000110 Random Filler

In order for this scheme to work, each index function has to have a globally-unique identifier.
By definition, a server/site that hosts a given function q() must also host its inverse function -q().

In a practical implementation, blocks of Z and F would be intermixed, so that a given server
might contain blocks of both Z and F, but never the same block number “n” for both, where the
server would never contain both ZBn and FBn. The purpose of intermixing blocks of Z and F on
the same server is to complicate brute-force analysis – combining blocks of Z together would
result in junk data (as would combining blocks of F together), while on any given server, some
of the blocks would be missing altogether.

Justin Parr Draft v0.9.2, 10/2013 Page 17 of 32

Impact of Block Size

Assuming that a specific file is 4 MB, and the blueprint size per block is 42 bytes (16 per MD5
hash, two hashes, plus 10 bytes of overhead), the following is an analysis of how block size
impacts the blueprint file:

Bits per Block Block Size Total Blocks Total Bytes

4,096 512 8,192 344,064

2,048 256 16,384 688,128

1,024 128 32,768 1,376,256

512 64 65,536 2,752,512

256 32 131,072 5,505,024

128 16 262,144 11,010,048

64 8 524,288 22,020,096

32 4 1,048,576 44,040,192

16 2 2,097,152 88,080,384

8 1 4,194,304 176,160,768

As the block size decreases, the blueprint size increases. At 512 bits per block (64 bytes) or
above, the resulting blueprint is smaller than the original 4 MB file. At 256 bits per block (32
bytes), the two files are almost the same length. At 128 bits (16 bytes) or less, the resulting
blueprint is much larger than the original file.

Larger blocks will ultimately result in fewer hash collisions, and less data stored in the blueprint.

MD5, no longer considered cryptographically-secure, could result in hash collisions – different
bit sequences that result in the same hash, and therefore would result in the wrong lookup for the
index function, q().

This can be avoided by adding a simple CRC32 (4 bytes per hash) to the blueprint, increasing the
block size within the blueprint to 50 bytes, which will virtually guarantee a unique label.

If the blueprint for a given file is longer than the file itself, the argument could be made that the
blueprint itself consists of confidential data – defeating the approach of removing information
from the blueprint in order to bypass the handling requirements.

Justin Parr Draft v0.9.2, 10/2013 Page 18 of 32

Receiving and Reassembling S

The client would obtain the blueprint file for “S”, which is a string describing repositories, index
functions, transformations, and block sequences used to reassemble the original bit stream of
“S”.

Once the blueprint file is obtained, reassembly consists of the following steps:

 1. Locate the repositories for all index functions. Perhaps this is accomplished via a
directory server.

Example:

URL for q1 = http://directoryServer/HasFunction.php?f=q1

returns

q1(x) = http://server1/qindex.php?q=x

And

URL for q2 = http://directoryServer/HasFunction.php?f=q2

returns

q2(x) = http://someotherserver2/qindex.php?q=x

 2. For each block defined in the blueprint for “S”, perform the following steps:
 a) Use the specified index function (repository 1) to download block 1 (B1)
 b) Use the specified index function (repository 2) to download block 2 (B2)
 c) Use the specified transformation to create SBn from B1 and B2
 d) Map SBn in to the bit stream S, based on location “n” (specified in the blueprint)

 3. Process the reassembled bit stream “S” (for example, decode the bitstream as a file, and
present it to the user)

Justin Parr Draft v0.9.2, 10/2013 Page 19 of 32

Legal Analysis

Copyrighted S

The “high-value” bit string S contains confidential data.

Depending on the nature of the confidential data, disclosing the content might impact either the
sender or the recipient, or simply having a copy of the data might create liability for the sender,
recipient, or any hosting facility.

For example, assuming the data is relatively benign, if the sender transmits a confidential list of
clients (for valid business purposes) to a vendor or employee, disclosing that list might put the
sender at risk for breach of contract (as an example), or knowing that a particular employee has
the client list might open them up to subsequent social engineering attacks, where obtaining the
list is the target.

Conversely, the data itself might have inherent privacy and security requirements that creates
some level of legal responsibility around simply having a copy of the data. An example is
Protected Healthcare Information (PHI) as defined by the Health Insurance Privacy and
Accountability Act (HIPAA). If a patient's medical records are hosted on a server, the owner of
the server is required to conform to HIPAA requirements for privacy and security. If the server
gets hacked and the information is disclosed, the server's owner could be at legal risk.

Another example is copyrighted material, the disclosure of which could result in impact to
revenue, or the illegal copying of which could result in civil and legal penalties.

From a compliance standpoint, data is either in scope or out of scope for privacy and security
requirements.

Since the random bit string F is just that – random – it can't be proven to be part of S or a
component of S. The specific bit sequence corresponding to F itself could be considered in
scope, but a new bit sequence F2 can be generated at random, requiring that all bit sequences be
in scope in order to prevent transferring or transmitting F, which is of course not possible.

F is completely safe, and can be any “reference” bit stream. F could even be derived from
images taken from a website (making a mirror copy of a website image would, of course violate
copyright law, but downloading them dynamically wouldn't)

Z is derived from S and F:

Z = S + F

Assuming S is not known, and F is truly random, Z is therefore random. Because Z is random,
the same principle can be applied to Z that we applied to F – if Z was in scope, a new F could be
generated, F2, resulting in a new Z2, and this could be iterated infinitely, for each random value
of F.

Justin Parr Draft v0.9.2, 10/2013 Page 20 of 32

If the complete strings Z and F were stored on one server, with the transformation algorithm
well-known, an argument could be made that Z and F together are in scope. By storing Z and F
on separate servers, broken in to blocks whose location within the original string S is not known,
no case can be made that a given block of Z (BZn) nor F (BFn) could possibly contain S or a part
of S, and therefore can't be in scope.

Plausible Deniability

Plausible deniability allows the sender, hosting entity, or recipient to claim no knowledge of the
“high risk” string, S.

The most obvious situation where plausible deniability could come in to play, is transferring
copyrighted material. For example, if the sender wants to share a copy of a copyrighted song,
encoded as an MP3 file, he could encode the file using this method, store the blocks individually
on several public servers, and send his friends the blueprint file.

From a legal standpoint, he has not copied nor transmitted the file. The file isn't being hosted on
any of the public servers (only encoded bit blocks are being stored there), nor have his friends
downloaded the file – they only have the blueprint, which contains no data.

Conversely, having the blueprint file, plus all of the encoded bit blocks on the same system
leaves little room for denying that the owner of the system is maintaining a copy of the
copyrighted song.

Another situation where plausible deniability would come in to play is corporate or other
espionage. In this situation, the sender is in a semi-secure target facility, and must assume all of
his transmissions are being monitored. He uploads some seemingly random pictures, text, and
other information to various websites, returns “home”, and uses the blueprint to reconstruct the
data he smuggled out of the target facility via the 3rd-party websites.

Because plausible deniability implies deception, it seems to infer nefarious intent. This
document side-steps any issues surrounding ethics or intent.

Justin Parr Draft v0.9.2, 10/2013 Page 21 of 32

Countermeasures

The following techniques can be used to further obfuscate the original source string S, and
therefore produce more “random” output blocks, or enhance plausible deniability.

• Many “scans” for high-risk content depend on keyword searches. So for example, a file
named “CompanyContactInfo.xls.blueprint”, might give the attacker a starting point.
Naming the blueprint files with generic names will avoid detection.

• A given server/site might host multiple index functions. Rather than provide a directory
of index functions that could provide an attacker with new information, the most secure
approach would be to offer an API function that returns a boolean TRUE or FALSE
when the client requests a given index function, by unique label. So a website hosting
functions q() and r() but not m() might respond as follows:

http://somesite/HasFunction.php?f=q
(returns “TRUE”)

http://somesite/HasFunction.php?f=r
(also returns “TRUE”)

http://somesite/HasFunction.php?f=m
(returns “FALSE”)

• A blueprint is basically a bit sequence, which can be “double encoded” as a second
blueprint, in order to shorten the blueprint of S, or further obfuscate S. Additionally, salt
data can be stored / encoded as a bit block.

Extending this approach, S could be deconstructed in to two complete bitstreams that
have to be completely reconstructed, and then XOR'd together in order to reform the
original “S”.

• As mentioned previously, blocks of “Z” and “F” should never be stored on the same
server. For a given block n, a server could contain Zn or Fn, but for plausible deniability,
hosting some blocks of Z and other blocks of F, should an attacker be able to relate Z, F
and S, implies that the hosting server has some knowledge of S. Storing as many random
blocks as possible, and re-using some blocks of F, spread across as many servers as
possible makes it impossible to prove the intent of the hosting entity, with respect to
knowledge of S.

• The index function q() might use a standard hash function such as MD5. Assuming the
use of salt data, there is a basis to defy cryptanalysis, because the returned data wouldn't
necessarily match the hashed value (D is “Data”, L is “Label”):

D = -q(L)
-q(L) returns “D”.

Justin Parr Draft v0.9.2, 10/2013 Page 22 of 32

However,
L /= MD5(D)
because of the salt data included in q()

• If hash values are returned as labels, for example:

q(x) = MD5(x + S) (Where S is Salt data)

Returned labels should be additionally scrambled using a simple, reversible scrambling
function t() (D is “Data”, L is “Label”):

L = q(x) = t(MD5(x + S))

D = -q(x) = -t(L)

t() can be as simple as rotating bytes within the label in some deterministic way – for
example, swap byte 1 with byte 7, 5 with 3, etc...

• Non-aligned blocks. Instead of starting at a specific byte offset within the source string,
the transformation operation can be specified to start at a byte offset past the block-
aligned byte offset of 0

• Overlapping transformations. A buffer string can be used as an intermediary, where
additional transformations can be applied.

• Many diverse transformations and multiple streams. This could include bit splitting,
where odd and even bits are split in to diverse bit streams.

B1 = S x 01010101
B2 = S x 10101010

S = B1 + B2

(Note: x means “AND”, + means “OR”)

• Inversion. Unary operations such as inversion against one block.

• Reversible operations, such as XOR against an arbitrary constant value (salt).

• Storing blocks on many diverse servers. The more spread out the data, the less data per
individual repository, making cryptanalysis much more difficult, and deniability much
more plausible.

• Use well-known bit sequences that are subject to copyright or in the public domain.
These could be images from a website, or some other arbitrary source in place of F. The
resulting Z bit string is more deterministic, but could still be suitably obfuscated by other

Justin Parr Draft v0.9.2, 10/2013 Page 23 of 32

countermeasures. This could be enhanced by embedding meta data in to image files, or
via true “steganography”, where hidden data is embedded in the image pixels.

• Alter the content. For example, an attacker might look for a specific digital artifact
within the original content, as proof that a file was copied, or originated from a specific
source. Transcoding content (audio, video, text) to another format would erase any
digital artifacts.

Additionally, if some quality can be sacrificed, consider converting to analog and back to
digital. For example, a confidential document could be printed, then re-scanned in order
to erase any digital watermarks that could tie the original file back to a specific person.

• The blueprint doesn't contain any data. Likewise the individual bit blocks don't contain
any data. For the best plausible deniability, and least liability, bit blocks should be
downloaded on the fly, only stored in RAM, and never stored on physical media.
Likewise, the “final” bit stream should be dynamically reconstructed, and never stored on
physical media. Due to advanced computing capabilities, this can be done as effectively
as streaming.

• An attacker might configure a “honeypot” server, pretending to host labeled bit blocks for
a given function (maybe “q()”). The system should employ a mechanism by which the
client can validate that the label in question refers to the block that was downloaded.
Without compromising the underlying hash algorithm, nor the index function itself, this
is difficult to do. The easiest approach is to include a hash checksum with the data itself,
such that the hash is also encrypted alongside the data. For example, the first x bytes of
every data block (once decoded) could be the checksum.

Justin Parr Draft v0.9.2, 10/2013 Page 24 of 32

Analysis of File Sharing Schemes, Compared to the Blueprint Method

The “blueprint” method, described in this document provides an alternative to various, existing
file transfer / sharing methods. This section compares these to the blueprint method, using a
“worst case” scenario of sharing copyrighted content. The example used is sharing a
copyrighted song stored in MP3 format, and was selected as the example because it presents
significant liability for multiple parties.

Justin Parr Draft v0.9.2, 10/2013 Page 25 of 32

Overview of Blueprint Method

Using the blueprint method, the content is split apart in to multiple streams, broken in to blocks,
labeled, uploaded to various public servers (Host1 and Host2), and the labels are stored in the
blueprint. The Sharer either directly or indirectly transfers the blueprint to the Downloader.

The Downloader only stores the Blueprint, downloading the bit blocks on the fly, reconstructing
the content only a segment at a time, in RAM.

Justin Parr Draft v0.9.2, 10/2013 Page 26 of 32

Host1

Sharer

Downloader

Host2

Content Blueprint

Direct Sharing

The sharer transcodes the content to a digital file, which is then transferred to the downloader.

The Sharer is legally liable for sharing copyrighted content, while the Downloader possesses an
illegal copy, and is also liable.

Analysis:
Since the blueprint contains no content, the sharer is not liable. Likewise, the Downloader is not
liable for storing a local copy of the blueprint. Should the Downloader use the blueprint to
reconstruct and store a local copy of the original file, he/she would be liable for the illegal copy
of the content.

If the Downloader pulls blocks from multiple sources, while downloading bogus blocks,
reconstructing the content on-the-fly, it would be impossible to prove that the Downloader made
a copy of the content. This would be logically-equivalent to the public liability of viewing a
Youtube video.

Justin Parr Draft v0.9.2, 10/2013 Page 27 of 32

Sharer DownloaderContent

Hosted Sharing

The Sharer transcodes content that is stored on a host server. The Downloader downloads the
content from the host server.

The Sharer has no liability, as long as the content isn't tagged. Tagging ties a specific copy of
the content to a specific distribution, meaning that based on serial number or some other tag
embedded in the content, it can be tied back to the Sharer. If that's the case, two opposing
arguments can be made:

• The Sharer is knowingly making the content available to be downloaded, and maintains
liability

• The Sharer has the right, per Digital Millenium Copyright Act (DMCA) to make a
backup copy of the content, and isn't responsible for security of the Host.

The Host is 100% liable for storing and serving copyrighted content – this is the exact situation
faced by YouTube and other video sharing sites, where they have no direct control over what
their members upload.

The Downloader is liable only to the extent that they “illegally” posses copyrighted content.

Justin Parr Draft v0.9.2, 10/2013 Page 28 of 32

Host

Sharer DownloaderContent

Analysis:
As with direct sharing, there is no liability in hosting the blueprint.

Justin Parr Draft v0.9.2, 10/2013 Page 29 of 32

Peer to Peer (P2P) Sharing

The Sharer transcodes and creates a “seed” copy of the content, stored on the Host. The first
Downloader downloads content from the Host, while the second downloader downloads content
from both the Host and the first Downloader, who has now become a Host.

Originally, P2P sharing required a centralized “directory” of content stored on various hosts –
each Downloader was also a Host by default.

Newer P2P sharing methods don't use a central directory. Instead, “seed” locations and block
information are stored in a “torrent” file (similar to a blueprint), which decentralizes the entire
process. If one “seed” host goes offline, the file can be re-seeded from another host.

The ephemeral nature of P2P sharing is believed to be a protection from detection and liability.
From an enforcement standpoint, all the attacker has to do is attempt to download the file using a
standard torrent client. If the file name contains “SomeBand - SomeSong.torrent”, then the
expectation is that the download and reassembly process will result in a file containing content
that is copyrighted by “SomeBand”. Downloading the file and reviewing the content would
validate for the attacker whether or not the Host is actually sharing copyrighted content.

Justin Parr Draft v0.9.2, 10/2013 Page 30 of 32

Host

Sharer

Downloader1
Content

Downloader2

Typically, enforcement centers around the most prolific Hosts, but any person who downloads
the content, and then makes it available for subsequent downloading is potentially, significantly
liable.

P2P depends on a large network of mostly unreliable hosts, precluding streaming, and
necessitating a complete download of the file before being able to use the content.

Like the blueprint method, there is no direct liability for hosting a torrent file – it contains no
actual data.

Analysis:
In contrast, the blueprint method allows content to be streamed from a smaller network of more
reliable hosts using well-known locations for a particular bit block, while presenting very little
liability for the hosting servers. A blueprint contains no data, and can be shared, hosted, or
downloaded with no liability.

Naming the blueprint “SomeBand – SomeSong.blueprint” will obviously draw unwanted
attention. Unlike the torrent method, an attacker who reassembles the content can't prove that
any given Host has a complete (or even partial) copy of the content. For example, a blueprint
could be devised that would allow “SomeBand – SomeSong.blueprint” to be completely
reconstructed using bit blocks found exclusively within images stored on a web site – the images
themselves are subject to copyright, independent of the file being reconstructed. The attacker
him/herself would be downloading copyrighted content, using it in violation of its owners'
copyrights, in order to prove whether the content of “SomeBand – SomeSong.blueprint” actually
contains the content in question.

Justin Parr Draft v0.9.2, 10/2013 Page 31 of 32

Conclusion

By attacking the concept that content is something we store locally, we can construct a method
by which content is dynamically reconstructed using specific blocks of random data.

This approach provides a framework for the plausibility of openly sharing and hosting random
data that can be securely reassembled in to the original high-value / high-risk content.

Justin Parr Draft v0.9.2, 10/2013 Page 32 of 32

