Share Files Securely
Justin Parr, 10/2013

Abstract

This document outlines a method for encoding, stprand transmitting a file to one or more
recipients securely by creating multiple bit streaimt essentially contain no viable content, but
by which the recipient can re-construct the origotantent.

This is achieved by using a symmetric operatiodegcompose a “high value” byte sequence
(such as a file containing confidential data) itbkocks of random bit strings, and using hash
“label” values to retrieve known bit blocks in orde reconstruct the original high-value byte
sequence, based on instructions and label valugained in a “blueprint” string sequence.

Technical Assertions:

e A symmetric bitwise operation, such as XOR or E@¥ be used to split a high-value bit
sequence in to two random sequences that can debaoed in to the original sequence

e A hash function can be used to generate hash "labkles for a given bit sequence, that
can be used as an index for storing and retriexiagecific bit sequence.

e Salt Data can be used to generate multiple, urhiqsé values for the same bit sequence,
and can be used to generate multiple, unique ihd®xions.

e A blueprint string containing hash values and asdgmstructions can be used to locate,
download, transform, and assemble various blockarafom bit strings in order to
reconstruct the original high-value bit sequence.

e Using overlapping hash indices, multiple equival@aoeprints can be constructed that
represent the same original bit sequence. Thasvalmutation and randomization when
sharing blueprints.

Justin Parr Draft v0.9.2, 10/2013 Page 1 of 32

Methodology

1.

Demonstrate that a “high value” bitstream carmeoded as 2 or more random bit
sequences plus a blueprint that can be leveragestomstruct the original high-value
bitstream on the fly.

Provide a high-level algorithm for informationasimg using the above principle.

Review a legal analysis in the context of liapiand plausible deniability with respect to
encoding, storing, transmitting, or receiving “higgk” confidential content.

Review countermeasures that either complicaigtanalysis or support plausible
deniability.

Legal and Technical comparison of this methodregj@ther file transfer / file sharing
mechanisms.

Justin Parr Draft v0.9.2, 10/2013 Page 2 of 32

Symbols

Symbol Definition

+ Boolean OR (returns “1” if either input is 1)

+ Boolean XOR (returns “1” only if one input is 1 atiek other is 0)
X Boolean AND (returns “1” only if both inputs arg 1

= Equivalence function (returns “1” only if both injgLare the same)
/= Not Equal

- Inverse, -A = NOT(A) (returns “1” if input is Ond “0” if input is 1)
f() Function “f”
-f() Inverse of function “f”, for example: -f(f(x))x

Justin Parr

Draft v0.9.2, 10/2013

Page 3 of 32

The Associative Nature of the XOR Boolean Function

XOR is the “eXclusive OR” Boolean function, yieldiri in the event that A and B inputs are
different, and 0 in the event that A and B inputsthe same.

A B A+B
XOR
0

[l (@[]

RO |O

1
1
0

The Equivalence function yields 1 where A and Btaeesame, and 0 where A and B are
different, and is therefore equal to the negatdgudwof A +B:

A=B = -(A+B)
Truth table:
A B AXxB A+B A+B A=B -A
AND OR XOR EQU NOT
0 0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1

When the output of XOR is.combined with one oirifsuts, XOR vyields the OTHER input:

A+B =27,

Z+A =B, and

Z+B = A
0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

Since the Equivalence function is equal to the tezhjautput of XOR, the Equivalence function
exhibits the same associative property.

Justin Parr Draft v0.9.2, 10/2013 Page 4 of 32

Decomposing A “High-Value” Bitstream

Given a “high value” bit stream, S, with a label'@01” (the labels will be discussed later), S
might represent the bit sequence of some confidleddita.

S = Significant (“High Value”) bit sequence
Lofofolalafofsfalolofofofafalafs[afalalalolofolols]2]0f1][1]0]0]0]
Label = Q01

F, whose label is “Q02”, represents a random faetbich is a random bit sequence with the
same length of S

F = Random Factor
Lol afolalafafofolala[1[1[ofolofofafofololalofolalala[1[0lolofo0]1]
Label = Q02

Z, whose label is “Q03", is calculated asFSwhere XOR is applied in a bitwise fashion. BRor
given bit position “b”, Zb = SbFb

Z = XOR output
Lol afofolofafafalalafafafalalals[ofalalalafofolalolols[1][1]0f0]1]

Label = Q03

Because F is random, Z is therefore random.

Neither F nor Z contain S, due to the fact thahldoand Z are random. Only F and Z together
with the XOR function (combined) can re-create iBany component (F, Z or XOR) is missing,
S can't be reconstructed.

Likewise, either F or Zouldbe XOR components of an entirely different bieatn, other than
S.

Given Z, and another high-value bit sequence A:
There exists a bit seﬂuence B that is also randapnh that ZB = A

Note that because F is random, Z is random, andftire B is also random, and B can'’t be
related to S nor A.

Assuming that F is “really random” (not machineym$@random), the relationship between Z
and S will defy cryptanalysis, as it is as secwwra &ne time pad” cipher, which, excluding
human error or compromise, is considered to befépdy secure”.

The frequency with which Z or F are used to decosepather secure streams is directly relevant
to the chance that enough information is availédken attacker, to mount an attack against S.

Justin Parr Draft v0.9.2, 10/2013 Page 5 of 32

Using a bijective function to label bit sequences

A bijective formula has exactly one return valuedach input value, and vice-versa. So for any
given “Xx”, there is only one value of b, such thaf(x), and likewise, only one x such that x=
-f(b). For the purpose of this document, a bijefunction can be implemented as a lookup

table.

Using a bijective index function, q(), each unidpitesequence Bx can be labeled as Qx, where:

Qx=q(Bx)

Due to the bijective nature of q():

Bx=-q(q(Bx)

and

Qx=q(-q(Qx))

Using the sample bit streams listed previouslys lééfine the function, g() as follows:

String B q(B)
S (high-value) 00011011 000021111 112710000 11011000 1 QO
F (random) 01011100 11110000.10001001 11100001 Q02
Z (XOR product) 01000111 1111112171 01111001 001110401 03

For clarity,
(00011011 00001111 21110000 1101106@01
-q(Q01) =00011011 00001171 11110000 11011000
q(-aQ01) =Q01

-q(q(00011011 00001111 11110000 11011)80
00011011 00001111 11110000 11011000

Since we use the variable “S” in place of the highue bit stream:
S=00011011 00001111 11110000 11011000

The above can be expressed more conveniently as:

q(S) = Q01
-q(Q0D =S
q(-qQ0D) =Q01

Justin Parr Draft v0.9.2, 10/2013

Page 6 of 32

-9[Q©) =S

Since any bitwise operation, including XOR and ECHd operate on a bitstream, the
relationship between S, F, and Z can be expresstallaws, using q():

-q(Q03 = -q(Q0J) +-q(Q02)

Therefore:
Q03=q(-qQ01) +-q(Q02))

Since XOR allows S, F, and Z to be interchangesl fahowing is also true:
Q01=q(-aQ03 *-q(Q02J))

In a practical implementation, q() would be a lopkable, and a unique “label” Qx would be
generated using a one-way hash algorithm h(), thatifor every value of “B”:

Qx = h(Bx)

One-way hash algorithms are not reversible, anddvdepend on () and -q() (the index
function) to find the original value of Bx.

From a practical perspective, h() can be implenteageany one-way hashing function (“secure”

or otherwise) that is guaranteed to provide sudfituniqueness to differentiate various bit
streams, and includes MD5 or SHA1.

Justin Parr Draft v0.9.2, 10/2013 Page 7 of 32

Using Salt Data To Generate Multiple, Unigue IndeXrunctions

Using the standard MD5 hash algorithm as an exafoplie basic index function q(), hashing
the high value bit sequence “S” results in theofwihg hash value:

Description Bit Sequence
S (high-value) 00011011 00001111 11110000 11011000
MD5 Hash* 7d7714e4b82169a38213bda47bdad77a

*MD5 of the string value, not binary — “I said NOGAET in the margaritas...”

Using a salt value, S can be transformed prioaghmng:

S (high-value) 00011011 00001111 11110000 11011000
Salt B=10101010 10101010,26101010 10101010 10101010
XOR (S +B) 101100041010@101 01011010 01110010
MD5 Hash* b58de1440afb7b6d8378ad74efef06ed

Multiple salt values can be associated with a ginelex function:

Function Salt Pre-hash Bit Sequence (XOR S B) Label
S (high-value) 00011011 00001111 12110000 11011000 a p/
Index g() None 00011011 00001112/11110000 11011p00 Q

Index r() 1010101¢=»10110001 10100401 01011010 01MA0Q0 R
Index m() 100102401 10001110 100171010 01100101 0KmD11 M

In this regard, for a given salt length L, the n@mbf unique index functions that can be created
is 2L, where B=00000000 would result in the indiexction g() above (no transformation prior
to hashing)

Justin Parr Draft v0.9.2, 10/2013 Page 8 of 32

Encoding S
In this theoretical example, the “high-value” bittem (our confidential data) is S:
S=00011011 00001111 11110000 11011000
F is a random bit string, in this case:
F=01011100 11110000 10001001 11100001
The random bit string can be generated using adpsandom number generator function, or can
be digital measurements obtained from a randontedig.g. instantaneous CPU utilization, heat
measurements, and the like)
Given F, Q02 can be obtained using q():
Q02= qg(F)
Z and QO3 can be obtained as follows:
Z=S+F
Q03=q@)
At this point, S can be expressed as:
S=-9Q02 + -qQ03

To reconstruct S, there must be knowledge of tdexrfunction g() and the relationships:

Q02=q(F)
Q03=q(2)

As well as the function that defines the relatiopsietween F and Z (which is XOR)

The index function g() can be seeded with manyefatdues of Qn where the associated bit
string is not used to reconstruct S, or perhapss@art of another high-value string, T.

Again, from a practical standpoint, q() can be pafaad with random or pseudorandom bit
strings, and the associated labels can be genarsitegl the legitimate hash function h(). This
would prevent an attacker from “weeding out” fabstestrings by calculating Qn for each Bn,
and comparing against q(Bn).

Finally, a blueprint of S can be constructed usimgtokens that identify the components used to
re-create S:

Justin Parr Draft v0.9.2, 10/2013 Page 9 of 32

S ="q,Q02,X0OR,q,Q03”
In this example:

q Identifies the index function -q() used to conv@€2 in to a bitstream
Q02 The label of the first factor. (sequence i®isRquential)

XOR The logic function used to convert to bit stsrigack in to S

q Identifies the index function -q() used to cony@@3 in to a bitstream
Q03 The label of the second factor.

Note that since Q02 and Q03 are not sequence depertkdey could be listed in any order,
meaning Q02 could either be related to F or Z,taedsame for Q03. The random and derived
factors can be listed in the blueprint in any order

Q02 and Q03 could conceivably use two differenemtunctions (possibly from two different
servers, as an example)

Other transformation functions such as EQU couldde in place of XOR. Unary operations

can be added to further convolute bit strings bgagibit shifting, inversion, or other “well
known” transformations.

Justin Parr Draft v0.9.2, 10/2013 Page 10 of 32

Block Encoding

Although the entire bit string S can be encodedresblock, the value of doing this diminishes
for large bit strings, since the amount of datthmindex function q() is equal to 2 times the
length of S, and also increases the chances thatromising g() could result in S subsequently
being compromised.

A better approach is to break S down in to fixeagté blocks, resulting in smaller
corresponding blocks for F and Z, that are easistdre and transfer, and results in more table
entries for q(). Since the sequence of a partidultzck Qn can't be determined within the bit
string S, a brute force attack would not only heveompare all values of q(), but all possible
sequences of all values of () in order to obtaiwldch assumes S was known in advance, or
else you would not have an end-state to compatesiga

Using the example listed previously, and an aryittdock length of 8 bits, a sample encoding
process looks like this:

1. Start with the “high-value” bit string, S
00011011 00001111 11110000'11011000

2. Break S in to 8-bit blocks:

Blocks of S Bit String

Block 1 of S (SB1) 00011011
Block 2 of S (SB2) 00001111
Block 3 of S (SB3) 11110000
Block 4 of S (SB4) 11011000

3. Generate random data, F, for each block of S:

Blocks of F Bit String

Block 1 of F (FB1) 01011100
Block 2 of F (FB2) 11110000
Block 3 of F (FB3) 10001001
Block 4 of F (FB4) 11100001

4. Calculate Z using XOR function from S and F:

Blocks of Z Bit String

Block 1 of Z (ZB1) 01000111
Block 2 of Z (ZB2) 11111111
Block 3 of Z (ZB3) 01111001
Block 4 of Z (ZB4) 00111001

Justin Parr Draft v0.9.2, 10/2013 Page 11 of 32

5. Generate labels and populate the index functjgn,

Label Bit String Purpose

q0 -q()

Q06 01011100 Block 1 of F (FB1)
Q07 11110000 Block 2 of F (FB2)
Q08 10001001 Block 3 of F (FB3)
Q09 11100001 Block 4 of F (FB4)
Q11 01000111 Block 1 of Z (ZB1)
Q12 11111111 Block 2 of Z (ZB2)
Q13 01111001 Block 3 of Z (ZB3)
Q14 00111001 Block 4 of Z (ZB4)
Q16 01100001 Random Filler
Q17 01001110 Random Filler
Q18 11011101 Random Filler
Q19 01001111 Randgm Filler
Q20 00000110 Ramdom FilleF
Q21 00011000 Random Filler
Q22 10001110 Randam“Eiller
Q23 01010110 Random Filex
Q24 10000011 RandomiEiller
Q25 11011010 Random Filler

6. Generate blueprint for each block of S:

Block Blueprint for Block

SB1 9,006 XOR,qQ11
SB2 9,007X0OR,qQ12
SB3 9,008 XOR,qQ13
SB4 9,009XOR,gQ14

7. Generate combined “final” blueprint for S by catenating block-level blueprints
S =0gRO6XOR,qQ1110,Q07,X0OR,qQ121,Q08 X0OR,qQ1319,Q09X0OR,qQ14
The final “blueprint” string has nothing to do withe original bit string, S

In a practical implementation, the block labels Wddoe non-deterministic, and “real” index
rows would not be grouped together — they woulddnelomly-interspersed with the junk,
random data. In this simple example, the blocklghre linear and the “real” index rows are
grouped together.

Additionally, the block length would have to bersigcantly larger than the example, in order to
make the blueprint as efficient as possible. jpmactical implementation, the hash function
could be MD5 (cryptographic security is not reqd)rer SHAL, and the block size could be 2k
(2048 bytes) or larger. MD5 checksums are 16 Hytag, so the “blueprint” string for each

Justin Parr Draft v0.9.2, 10/2013 Page 12 of 32

block of S would be 32 bytes, plus the encodingtierindex function q(), the transformation
function XOR, and possibly location hint data, &ototal of 50 bytes or less per block.

In theory, the index function g() would be tiedatgpecific repository location (such as a URL),
and could be defined early in the blueprint strifimdex hint” data might differentiate between
multiple repositories on the same server, or déffieclasses of data blocks. For example,
random block data could be stored within a fileghsas an image on a website, and the “location
hint” might be a byte or block offset within théefi

Alternately, various repositories for various indarctions could be stored centrally in a
directory... knowing which index function relateswhich repository, and the location (or
multiple locations) for a given repository coulddiered in the directory, then referenced within
the blueprint string.

Justin Parr Draft v0.9.2, 10/2013 Page 13 of 32

Blueprint Mutation / Permutation

A given bit block might be indexed by multiple indeinctions in order to allow blueprint
mutations. For example, a server that hosts t@exriunctions, g() and r(), and has every bit

block indexed by both q() and r(), might have sos#fry that looks like this:

Label Label Bit String Purpose

aQ) . rQ) -q() ., -rQ)

Q06 | R99 01011100 Block 1 of F (FB1
Q07 | R98 11110000 Block 2 of F (FB2
Q08 | R97 10001001 Block 3 of F (FB3
Q09 | R96 11100001 Block 4 of F (FB4
Q11 | R95 01000111 Block 1 of Z (ZB1
Q12 | R94 11111111 Block 2 of Z (ZB2
Q13 | R93 01111001 Block 30of Z (ZB3
Q14 | R92 00111001 Block 4 of Z (ZB4
Q16 | R91 01100001 Random Fillew
Q17 | R90 01001110 Random.killer
Q18 | R89 11011101 Random Eiller
Q19 | R88 010011 14 Random Filler
Q20 | R87 00000110 Random Filler
Q21 | R86 00@11000 Random Filleg
Q22 | R85 10001110 Random Ejller
Q23 | R84 010103710 Randoa*Filler
Q24 | R83 1000004.1 Rangom Filler
Q25 | R82 11011010 Rénhdom Filler

A server might offer a translate function:

http://somesite/Translatelndex.php?q=0Q01&f=r

(might return “R99”, the equivalent of r(-q(Q06))

Given the two index functions q() and r() listedad, the following bit strings are all

equivalent:

-0(Q06) -q(Q07) -q(Q08) -q(Q09)

-r(R99) -r(R98) -r(R97) -r(R96)

-q(Q06) -r(R98) -q(Q08) -r(R96)

(etc..))

In this example, there are 4 blocks and 2 indextians, yielding 24 = 16 possible unique

blueprints.

Justin Parr

Draft v0.9.2, 10/2013

Page 14 of 32

This allows an individual who shares the blueptintmutate” the blueprint by randomly
translating block labels from -q() to -r() in orderobfuscate the blueprint. Using just two index
functions, with an example bitmap consisting of0B,®locks, the number of unique blueprints
that represent the same bitmap would be 2200Ghalould easily defy signature-based
detection at network gateways and when performanges scans.

Advanced server functionality might even offer autate” function, that stores a “meta

blueprint” and always returns a unique, mutatedioeerof the original for each download
request.

Justin Parr Draft v0.9.2, 10/2013 Page 15 of 32

Storage and Transfer of Encoded S

Transferring the encoded high-value bit string t&pends on neutral third-party servers to host
the index function q(), which includes the bitstys and associated labels for all blocks
necessary to reassemble S.

The bit strings and labels become “public” inforraat while the blueprint itself (and perhaps a
meta-map of how to interpret the blueprint) wouddttansferred from peer to peer.

From an implementation standpoint, a simple sesegpt can be written, that performs a
database lookup based on a single parameter (“q”):

http://someserver/gindex.php?g=008

In our example, this index URL with the q paramete®08 would return the byte “10001001”
from our simple, sample lookup table.

Other functions might point to mirror sites contagithe same index function, or to a global
directory URL where additional repositories (indarctions) can be located.

Ideally, each factor of S (blocks of F and Z) wobklstored on separate servers, and optimally,
many different servers.

gl(x) =http://serverd/gindex.php?g=x

g2(x) =http://someotherserver2/qindex.php?2g=x

Server 1 database:

Label Bit String Purpose

q1() -91()

Q06 01011100 Block 1 of F (FB1)
Q07 11110000 Block 2 of F (FB2)
Q08 10001001 Block 3 of F (FB3)
Q09 11100001 Block 4 of F (FB4)
Q21 00011000 Random Filler
Q22 10001110 Random Filler
Q23 01010110 Random Filler
Q24 10000011 Random Filler
Q25 11011010 Random Filler

Server 2 database:

Justin Parr Draft v0.9.2, 10/2013 Page 16 of 32

Label Bit String Purpose

q0 -q()

Q11 01000111 Block 1 of Z (ZB1)
Q12 11111111 Block 2 of Z (ZB2)
Q13 01111001 Block 3 of Z (ZB3)
Q14 00111001 Block 4 of Z (ZB4)
Q16 01100001 Random Filler
Q17 01001110 Random Filler
Q18 11011101 Random Filler
Q19 01001111 Random Filler
Q20 00000110 Random Filler

In order for this scheme to work, each index fumctias to have a globally-unique identifier.
By definition, a server/site that hosts a givenction q() must also host its inverse function -q().

In a practical implementation, blocks of Z and Fudobe intermixed, so that a given server
might contain blocks of both Z and F, but neversame block number “n” for both, where the
server would never contain both ZBn and FBn. Timg@ase of intermixing blocks of Z and F on
the same server is to complicate brute-force aisatysombining blocks of Z together would
result in junk data (as would combining blocks dbgether), while on any given server, some
of the blocks would be missing altogether.

Justin Parr Draft v0.9.2, 10/2013 Page 17 of 32

Impact of Block Size

Assuming that a specific file is 4 MB, and the lgdet size per block is 42 bytes (16 per MD5
hash, two hashes, plus 10 bytes of overhead)ptloaing is an analysis of how block size
impacts the blueprint file:

Bits per Block Block Size Total Blocks Total Bytes

4,096

2,048

1,024
256 32 131,072 5,505,024
128 16 262,144 11,010,048
64 8 524,288 22,020,096
32 4 1,048,576 44,040,192
16 2 2,097,15 4
8 1 4,194,30-8

As the block size decreases, the blueprint sizeases. At 512 bits per block (64 bytes) or
above, the resulting blueprint is smaller thandtiginal 4 MB file. At 256 bits per block (32
bytes), the two files are almost the same length128 bits (16 bytes) or less, the resulting

blueprint is much larger than the original file.

Larger blocks will ultimately result in fewer hastllisions, and less data stored in the blueprint.

MD5, no longer considered cryptographically-secuaoeild result in hash collisions — different
bit sequences that result in the same hash, anefohe would result in the wrong lookup for the
index function, q().

This can be avoided by adding a simple CRC32 (dsoger hash) to the blueprint, increasing the
block size within the blueprint to 50 bytes, whighl virtually guarantee a unique label.

If the blueprint for a given file is longer tharethile itself, the argument could be made that the

blueprint itself consists of confidential data fadding the approach of removing information
from the blueprint in order to bypass the handteguirements.

Justin Parr Draft v0.9.2, 10/2013 Page 18 of 32

Receiving and Reassembling S

The client would obtain the blueprint file for “Skhich is a string describing repositories, index
functions, transformations, and block sequenced tsseeassemble the original bit stream of
HS”.

Once the blueprint file is obtained, reassemblysisia of the following steps:

1. Locate the repositories for all index functiof®erhaps this is accomplished via a
directory server.

Example:

URL for q1 =http://directoryServer/HasFunction.php?f=ql

returns

gl(x) =http://serverl/gindex.php?gq=x

And

URL for g2 =http://directoryServer/HasFunction.php?f=g2

returns

g2(x) =http://someotherserver2/qindex.php?g=x

2. For each block defined in the blueprint for “B&rform the following steps:
a) Use the specified index function (repositoryaldlownload block 1 (B1)
b) Use the specified index function (repository@ylownload block 2 (B2)
c) Use the specified transformation to create SBmfB1 and B2
d) Map SBn in to the bit stream S, based on londt3 (specified in the blueprint)

3. Process the reassembled bit stream “S” (for @l@ndecode the bitstream as a file, and
present it to the user)

Justin Parr Draft v0.9.2, 10/2013 Page 19 of 32

Legal Analysis

Copyrighted S
The “high-value” bit string S contains confidentikta.

Depending on the nature of the confidential dasgldsing the content might impact either the
sender or the recipient, or simgigving a copyof the data might create liability for the sender,
recipient, or any hosting facility.

For example, assuming the data is relatively benfighe sender transmits a confidential list of
clients (for valid business purposes) to a vend@naployee, disclosing that list might put the
sender at risk for breach of contract (as an exampt knowing that a particular employee has
the client list might open them up to subsequenias@ngineering attacks, where obtaining the
list is the target.

Conversely, the data itself might have inherentgmy and security requirements that creates
some level of legal responsibility around simpévinga copy of the data. An example is
Protected Healthcare Information (PHI) as defingdhe Health Insurance Privacy and
Accountability Act (HIPAA). If a patient's medicedcords are hosted on a server, the owner of
the server is required to conform to HIPAA requiegnts for privacy and security. If the server
gets hacked and the information is disclosed, éinees's owner could be at legal risk.

Another example is copyrighted material, the disete of which could result in impact to
revenue, or the illegal copying of which could desucivil and legal penalties.

From a compliance standpoint, data is either ipsa out of scope for privacy and security
requirements.

Since the random bit string F is just that — randeitincan't be proven to be part of S or a
component of S. The specific bit sequence corredipg to F itself could be considered in
scope, but a new bit sequence F2 can be genetataadam, requiring that all bit sequences be
in scope in order to prevent transferring or traittemy F, which is of course not possible.

F is completely safe, and can be any “referencdeStbeam. F could even be derived from
images taken from a website (making a mirror copgy website image would, of course violate
copyright law, but downloading them dynamically wanit)
Z is derived from S and F:

Z=S+F
Assuming S is not known, and F is truly randoms Zhierefore random. Because Z is random,
the same principle can be applied to Z that weie@pb F — if Z was in scope, a hew F could be

generated, F2, resulting in a new Z2, and thisacbeliterated infinitely, for each random value
of F.

Justin Parr Draft v0.9.2, 10/2013 Page 20 of 32

If the complete strings Z and F were stored onsareer, with the transformation algorithm
well-known, an argument could be made that Z atafjEther are in scope. By storing Z and F
on separate servers, broken in to blocks whoséidocaithin the original string S is not known,
no case can be made that a given block of Z (BanFn(BFn) could possibly contain S or a part
of S, and therefore can't be in scope.

Plausible Deniability

Plausible deniability allows the sender, hostintitgnor recipient to claim no knowledge of the
“high risk” string, S.

The most obvious situation where plausible denigibuld come in to play, is transferring
copyrighted material. For example, if the sendants to share a copy of a copyrighted song,
encoded as an MP3 file, he could encode the fileggukis method, store the blocks individually
on several public servers, and send his friendblineprint file.

From a legal standpoint, he has not copied nostnatited the file. The file isn't being hosted on
any of the public servers (only encoded bit bloglesbeing stored there), nor have his friends
downloaded the file — they only have the bluepmvitich contains no data.

Conversely, having the blueprint file, plus alltbé encoded bit blocks on the same system
leaves little room for denying that the owner & #ystem is maintaining a copy of the
copyrighted song.

Another situation where plausible deniability woulmne in to play is corporate or other
espionage. In this situation, the sender is iamisecure target facility, and must assume all of
his transmissions are being monitored. He uplsadse seemingly random pictures, text, and
other information to various websites, returns “lednpand uses the blueprint to reconstruct the
data he smuggled out of the target facility via3Hearty websites.

Because plausible deniability implies deceptiosegms to infer nefarious intent. This
document side-steps any issues surrounding ethiosemt.

Justin Parr Draft v0.9.2, 10/2013 Page 21 of 32

Countermeasures

The following techniques can be used to furtheusbéte the original source string S, and
therefore produce more “random” output blocks,rance plausible deniability.

Many “scans” for high-risk content depend on keydveearches. So for example, a file
named “CompanyContactinfo.xls.blueprint”, might@ithe attacker a starting point.
Naming the blueprint files with generic names ailbid detection.

A given server/site might host multiple index fuoos. Rather than provide a directory
of index functions that could provide an attacké&éhwew information, the most secure
approach would be to offer an API function thatires a boolean TRUE or FALSE
when the client requests a given index functionuhigue label. So a website hosting
functions g() and r() but not m() might responda®ws:

http://somesite/HasFunction.php?f=q
(returns “TRUE”)

http://somesite/HasFunction.php?f=r
(also returns “TRUE")

http://somesite/HasFunction.php?f=m
(returns “FALSE”)

A blueprint is basically a bit sequence, which barfdouble encoded” as a second
blueprint, in order to shorten the blueprint ob&further obfuscate S. Additionally, salt
data can be stored/ encoded as a bit block.

Extending this approach, S could be deconstructéd two complete bitstreams that
have to be completely reconstructed, and then X@dgjether in order to reform the
original “S”.

As mentioned previously, blocks of “Z” and “F” sHduever be stored on the same
server. For a given block n, a server could conZai or Fn, but for plausible deniability,
hosting some blocks of Z and other blocks of Fusthan attacker be able to relate Z, F
and S, implies that the hosting server has some/ledge of S. Storing as many random
blocks as possible, and re-using some blocks spfead across as many servers as
possible makes it impossible to prove the interthefhosting entity, with respect to
knowledge of S.

The index function g() might use a standard hasbtfan such as MD5. Assuming the
use of salt data, there is a basis to defy crypyaisa because the returned data wouldn't
necessarily match the hashed value (D is “Datas, ‘Label”):

D =-q(L)
-q(L) returns “D”.

Justin Parr Draft v0.9.2, 10/2013 Page 22 of 32

However,
L /= MD5(D)
because of the salt data included in q()
¢ |f hash values are returned as labels, for example:

g(x) = MD5(x+S) (Where S is Salt data)

Returned labels should be additionally scrambladgua simple, reversible scrambling
function t() (D is “Data”, L is “Label”):

L =q(x) =t MD5(x+S))
D = -q(x) = (L)

t() can be as simple as rotating bytes within #ieel in some deterministic way — for
example, swap byte 1 with byte 7, 5 with 3, etc...

e Non-aligned blocks. Instead of starting at a dpebyte offset within the source string,
the transformation operation can be specifieddd st a byte offset past the block-
aligned byte offset of 0

e Overlapping transformations. A buffer string canused as an intermediary, where
additional transformations can be applied.

e Many diverse transformations and multiple streafisis could include bit splitting,
where odd and even bits are split in to diversatigams.

B1=Sx01010101
B2 =S x 10101010

S=B1+B2
(Note: x means “AND”, + means “OR”)

e Inversion. Unary operations such as inversionrejaine block.

e Reversible operations, such as XOR against arranpitonstant value (salt).

e Storing blocks on many diverse servers. The mpreas! out the data, the less data per
individual repository, making cryptanalysis muchrendifficult, and deniability much
more plausible.

e Use well-known bit sequences that are subject pyroght or in the public domain.

These could be images from a website, or some athérary source in place of F. The
resulting Z bit string is more deterministic, boudd still be suitably obfuscated by other

Justin Parr Draft v0.9.2, 10/2013 Page 23 of 32

countermeasures. This could be enhanced by emigeddita data in to image files, or
via true “steganography”, where hidden data is etdbd in the image pixels.

o Alter the content. For example, an attacker migbk for a specific digital artifact
within the original content, as proof that a filaswcopied, or originated from a specific
source. Transcoding content (audio, video, texgrnother format would erase any
digital artifacts.

Additionally, if some quality can be sacrificed nstder converting to analog and back to
digital. For example, a confidential document dooé printed, then re-scanned in order
to erase any digital watermarks that could tieahginal file back to a specific person.

e The blueprint doesn't contain any data. Likewiseihdividual bit blocks don't contain
any data. For the best plausible deniability, l@agt liability, bit blocks should be
downloaded on the fly, only stored in RAM, and nestered on physical media.
Likewise, the “final” bit stream should be dynaniigaeconstructed, and never stored on
physical media. Due to advanced computing capigsijithis can be done as effectively
as streaming.

e An attacker might configure a “honeypot” serveetpnding to host labeled bit blocks for
a given function (maybe “q()”). The system shoedploy a mechanism by which the
client can validate that the label in questionn®te the block that was downloaded.
Without compromising the underlying hash algoritmor the index function itself, this
is difficult to do. The easiest approach is tdude a hash checksum with the data itself,
such that the hash is also encrypted alongsidddtae For example, the first x bytes of
every data block (once decoded) could be the checks

Justin Parr Draft v0.9.2, 10/2013 Page 24 of 32

Analysis of File Sharing Schemes, Compared to thdueprint Method

The “blueprint” method, described in this documgrdvides an alternative to various, existing
file transfer / sharing methods. This section carep these to the blueprint method, using a
“worst case” scenario of sharing copyrighted contdrhe example used is sharing a
copyrighted song stored in MP3 format, and wascseteas the example because it presents
significant liability for multiple parties.

Justin Parr Draft v0.9.2, 10/2013 Page 25 of 32

Overview of Blueprint Method

Host1l

rlam F‘g

ontent Blueprlnt

Downloader

Host2

Using the blueprint method, the content is splaram to multiple streams, broken in to blocks,
labeled, uploaded to various public servers (Hastl Host2), and the labels are stored in the
blueprint. The Sharer either directly or indirgdtlansfers the blueprint to the Downloader.

The Downloader only stores the Blueprint, downlogdhe bit blocks on the fly, reconstructing
the content only a segment at a time, in RAM.

Justin Parr Draft v0.9.2, 10/2013 Page 26 of 32

Direct Sharing

Downloader

The sharer transcodes the content to a digitalMitech-is then transferred to the downloader.

The Sharer is legally liable for sharing copyright®ntent, while the Downloader possesses an
illegal copy, and is also liable.

Analysis:

Since the blueprint contains no content, the shaneot liable. Likewise, the Downloader is not
liable for storing a local copy of the blueprir@hould the Downloader use the blueprint to
reconstruct and store a local copy of the origiib@l he/she would be liable for the illegal copy
of the content.

If the Downloader pulls blocks from multiple sousgc&vhile downloading bogus blocks,
reconstructing the content on-the-fly, it wouldibmossible to prove that the Downloader made
a copy of the content. This would be logically-eaient to the public liability of viewing a
Youtube video.

Justin Parr Draft v0.9.2, 10/2013 Page 27 of 32

Hosted Sharing

Content gpharer Downloader

The Sharer transcodes content that is stored astsskrver. The Downloader downloads the
content from the host server.

The Sharer has no liability, as long as the consgrittagged. Tagging ties a specific copy of
the content to a specific distribution,.meaning thesed on serial number or some other tag
embedded in the content, it can be tied back t&treger. If that's the case, two opposing
arguments can be made:

* The Sharer is knowingly making the content avaddablbe downloaded, and maintains
liability

* The Sharer has the right, per Digital Millenium @oght Act (DMCA) to make a
backup copy of the content, and isn't responsinieécurity of the Host.

The Host is 100% liable for storing and servingyegghted content — this is the exact situation
faced by YouTube and other video sharing sitesravtieey have no direct control over what
their members upload.

The Downloader is liable only to the extent thaythillegally” posses copyrighted content.

Justin Parr Draft v0.9.2, 10/2013 Page 28 of 32

Analysis:
As with direct sharing, there is no liability in $tong the blueprint.

Justin Parr Draft v0.9.2, 10/2013 Page 29 of 32

Peer to Peer (P2P) Sharing

Host

g

Content Sharer

E;ﬁy,_,./""

Downloader2

The Sharer transcodes and creates a “seed” capg abntent, stored on the Host. The first
Downloader downloads content from the Host, whike $econd downloader downloads content
from both the Host and the first Downloader, whe haw become a Host.

Originally, P2P sharing required a centralizedédiory” of content stored on various hosts —
each Downloader was also a Host by default.

Newer P2P sharing methods don't use a centraltdisecinstead, “seed” locations and block
information are stored in a “torrent” file (similty a blueprint), which decentralizes the entire
process. If one “seed” host goes offline, thedd® be re-seeded from another host.

The ephemeral nature of P2P sharing is believée @ protection from detection and liability.
From an enforcement standpoint, all the attackerntdao is attempt to download the file using a
standard torrent client. If the file name contdi@emeBand - SomeSong.torrent”, then the
expectation is that the download and reassemblgegsowill result in a file containing content
that is copyrighted by “SomeBand”. Downloading fite and reviewing the content would
validate for the attacker whether or not the Hestatually sharing copyrighted content.

Justin Parr Draft v0.9.2, 10/2013 Page 30 of 32

Typically, enforcement centers around the mostfediosts, but any person who downloads
the content, and then makes it available for sulbsstodownloading is potentially, significantly
liable.

P2P depends on a large network of mostly unrelibbsts, precluding streaming, and
necessitating a complete download of the file befming able to use the content.

Like the blueprint method, there is no direct lidpifor hosting a torrent file — it contains no
actual data.

Analysis:

In contrast, the blueprint method allows conterttécstreamed from a smaller network of more
reliable hosts using well-known locations for atjgatar bit block, while presenting very little
liability for the hosting servers. A blueprint cams no data, and can be shared, hosted, or
downloaded with no liability.

Naming the blueprint “SomeBand — SomeSong.bluepwiit obviously draw unwanted

attention. Unlike the torrent method, an attackko reassembles the content can't prove that
any given Host has a complete (or even partialy ajghe content. For example, a blueprint
could be devised that would allow “SomeBand — SoongSlueprint” to be completely
reconstructed using bit blocks found exclusivelyhim images stored on a web site — the images
themselves are subject to copyright, independetiteofile being reconstructed. The attacker
him/herself would be downloading copyrighted coftesing it.in violation of its owners'
copyrights, in order to prove whether the contdriSBemeBand — SomeSong.blueprint” actually
contains the content in question.

Justin Parr Draft v0.9.2, 10/2013 Page 31 of 32

Conclusion

By attacking the concept that content is sometkiagtore locally, we can construct a method
by which content is dynamically reconstructed uspgcific blocks of random data.

This approach provides a framework for the plaligytof openly sharing and hosting random
data that can be securely reassembled in to thmakihigh-value / high-risk content.

Justin Parr Draft v0.9.2, 10/2013 Page 32 of 32

