
A Method for Searching Encrypted
Ranges Using Comparator Values

Generated by Binary Trees

Justin Parr

v1.2, December, 2022

JustinParrTech.com

Table of Contents
 1 Revision History..3
 2 Abstract..4
 3 Overview / Executive Summary..5
 4 Encryption and Databases..6

 4.1 Impact to Database Indexes..9
 5 Comparators...10

 5.1 Generating Comparators...10
 5.1.1 Irregular Distribution Prevents Data Leakage..13

 5.2 Tree Capacity and Scaling..16
 5.3 Tree Balance, Refactoring, and Collisions...18

 5.3.1 Refactoring...18
 5.3.2 Collisions..19

 5.4 Searching Using Comparators..21
 5.4.1 Complex Queries..24

 5.5 Deleting Rows – Managing the B-Tree..24
 5.6 Using Other Data Types as Comparators...26

 5.6.1 String Comparators...26
 5.6.2 Binary String...27
 5.6.3 Poor Data Types for Comparators..27

 6 Binary Comparators vs Other Schemes...29
 6.1 Binary Comparators vs IBE / MRQED..29
 6.2 Fixed Search Keys..29
 6.3 Hidden Vector...30

 7 Conclusion...31

 1 Revision History
Version Updates Author

1.0 Nov, 2022 • Initial Version Justin Parr

1.2 Dec, 2022 • Clarify B-Tree orientation in diagrams
• Added: Comparison of “Binary Comparators”

to other schemes in greater detail
• Streamlined some of the wording
• Added: Using other data types for comparators
• Added: Deleting records (managing the B-

Tree)
• Modified watermark (page background)

Justin Parr

Justin Parr
November, 2022
Page 3 of 31

 2 Abstract
A ‘comparator’ is a numerical value that is congruent to a data element’s ordinal value, but generated
without disclosing any information.

One or two relational search terms can be passed to a database, and by converting the search terms to
comparator values, range comparisons can be made on encrypted values based on comparator
relationships to the underlying data.

Comparators are generated using a binary tree, which preserves the ordinal relationship of each data
element, and can then be quantified as an integer value.

Justin Parr
November, 2022
Page 4 of 31

 3 Overview / Executive Summary
Although it’s widely agreed that field-level data encryption provides the best protection against data
breaches, it also limits an application’s ability to perform ranged searches, where an inequality
comparison is performed against search terms.

Although there are existing strategies which use search trees, these are more focused on managing
decryption keys than the search itself.

Assigning artificial search keys is not a new approach, but the general problem is that it can result in
information disclosure as well as key collisions. If the keys are regularly-spaced, this can lead to an
inference about the underlying data values, and if the spacing is too narrow, this can lead to insufficient
search keys when presented with a large quantity of data values for given key interval.

In the scheme proposed herein, a binary tree is used to generate integer search keys, called
comparators, that are non-sequential but maintain the same ordinal relationship as the underlying data.
Because comparators have no fixed relationship to each other, they don’t leak any information.

Justin Parr
November, 2022
Page 5 of 31

 4 Encryption and Databases
Encryption scrambles data in a predictable way, such that it can be decrypted (or unscrambled) later.
This is an important tool that helps protect against a data breech, where an attacker is able to access a
database where sensitive data is stored in bulk.

In an encrypted state, sensitive information such as names, addresses, birth dates, credit card numbers,
bank account numbers, and contact details are worthless when stolen by an attacker.

Illustration 1

Using OpenSSL to encrypt an address using the password “password” and no salt.

echo 123 Anywhere St|openssl aes256 -e -k password -nosalt | base64

To decrypt:

echo 3k1pz5mn5P8HsCdLQ2BSti9kACA2t/nCHrFE3ni/+Ww=| base64 -d|openssl aes256
-d -k password -nosalt

When not encrypted (in a cleartext state), an attacker can use these details to commit fraud and identity
theft, and data breaches account for billions of dollars lost to fraud every year.

Encryption can be implemented in a number of different ways, but experts generally agree that field-
level encryption is the most secure.

Type of Encryption Technology Layer Implication

Field-Level Application Encryption is managed by the application, and
data is only presented in cleartext when the
application is using it.

Column-Level Database The Database Management System (DBMS)
manages the encryption and decryption.

Data values are stored in an encrypted format,
similar to field-level encryption, but data values
are passed to the application in cleartext (although
typically using an encrypted transmission channel)

Justin Parr
November, 2022
Page 6 of 31

Transparent Data
Encryption (TDE)

Database The DBMS stores the field values in cleartext, but
the database file itself is encrypted by the DBMS
as it’s written to disk.

As with column-level encryption, TDE is
transparent to the application.

Encrypting File System
(EFS) /
Encrypted File System /
Block-Level

Operating System The Operating System is configured to encrypt
specific files, folders, or an entire partition.

The encryption is managed by the OS, and is
transparent to both the database and application.

Storage-Level /
Block-Level

Virtualization / Storage The Operating System runs in an environment
where the hardware and / or storage are
virtualized.

Encryption is managed by the Storage Controller
and / or Hypervisor, and is transparent to the OS,
database, and application.

As the encryption moves farther from the application, it becomes faster and less expensive because
some other layer is handling the encryption and decryption.

However, each layer that presents the data in cleartext also presents an attacker with an opportunity to
steal it. For example, if using block-level encryption and the OS is compromised, an attacker has
access to the entire database file in cleartext, which could be exfiltrated in-tact, and dissected later.

Field-level encryption, while it has the most overhead, is also the most secure because only the
application sees the data in cleartext.

Within the application, searching for a specific, encrypted value (equality search) is relatively
straightforward:

• Because the encryption process is deterministic, a given cleartext data value will always result

in the same encrypted version of that value.

• Assuming that the user enters a specific search value, the application encrypts it, and then

performs a database search using the encrypted value.

• Again, because the encryption process is deterministic, if the encrypted value exists in the

database, then the cleartext search value is the same as the cleartext version of the encrypted
value found in the database.

Justin Parr
November, 2022
Page 7 of 31

However, a byproduct of the encryption process is that because numbers, dates, and strings are
scrambled, they lose their ordinal relationship. This makes ranged (inequality) searches impractical
unless the application decrypts and compares every value against the search value.

For example:

• Searching ranges of encrypted birth dates, account numbers, or account balances

• Searching ranges of encrypted health data, such as blood pressure or heart rate

• Searching ranges of encrypted text data, such as names beginning with “J”

What would normally be a simple ranged search, such as “WHERE birthDate > 1/1/1990” is no longer
feasible because every birthDate in the database is scrambled, and has no ordinal relationship to the
search value. Therefore, each birthDate must be retrieved by the application, decrypted, and then
compared to the search value, ‘1/1/1990’. The same is true of ranged text searches, for the same
reason.

For clarity, we will differentiate the two following, unrelated terms:

• Encryption Key: Allows an encryption algorithm called a cipher to encrypt or decrypt data.
The encryption process takes the data and key as input, and scrambles the data in a
deterministic way, so that it can be unscrambled later using the appropriate decryption key. If
the wrong key is specified during the decryption process, the data remains scrambled.

• Search Key / Database Key: Allows a database engine to identify a specific row or rows
based on a unique value. For example, a “people” table might have a unique key called
“PersonID”. Even if there are multiple people with the same name, each would each have a
unique PersonID. To tell the database to retrieve, update, or delete a specific person, you
would specify the PersonID rather than the name.

Although there are existing strategies which use search trees, these are more focused on managing the
decryption keys than the search process itself.

Assigning artificial search keys is not a new approach, but the general problem is that it can result in
information disclosure as well as key collisions. As an example, given sequential search keys, and
knowing some of the underlying associated values allows an attacker to deduce other values by
induction.

For example:

If we have encrypted street addresses, where k is the set of search keys, k10=1230 and k20=1232,
then it’s reasonable to assume k15=1231.

Justin Parr
November, 2022
Page 8 of 31

The other problem with this approach is that, despite the interval gap, there is no way to predict the
relative ordinal value of new data added to the database, whose quantity might exceed the gap.

For example:

If we have encrypted street addresses, where k10=1230 and k20=1250, what happens if we add all
of the street addresses between? There are 19 possible data values in the range, but only 10
search keys in the key interval, which leads to the possibility that this scheme could have to deal
with 9 data values without search keys, or would have to re-allocate and shuffle search keys,
etc.

 4.1 Impact to Database Indexes
Each data table within a database may have one or more indexes, and the purpose of an index is to
maintain a sorted, searchable list of pointers to the data. This can be used to speed up searches and
sorts for frequently-used columns, especially when searching key fields that are used for joining tables.

Of course, the Database Management System (DBMS) doesn’t physically rearrange the data – an index
works like a linked list that maintains the proper sequence when the DBMS is asked to return data from
that particular table.

In addition to facilitating equality searches (a search for a specific value), indexes speed up ranged
searches because each index maintains a specified order for the affected data elements.

For example:

Creating an index on a column called ‘date’ would allow the DBMS to quickly return a list of
dates within a specific range without having to scan each row of data (called a table scan) which
is both expensive and slow. Instead, the DBMS consults the index, which already maintains a
sort order for ‘date’, and can simply do a binary search within the index to find the top and
bottom of the range, and then return all the rows in between.

Likewise, an application can request the most recent transaction by asking the database for the largest
number from an integer column called ‘transaction_ID’, and the DBMS finds this almost instantly by
simply jumping to the end of the appropriate index.

However, if the indexed column is encrypted, this largely negates the value of the index because the
values are no longer sorted properly.

Justin Parr
November, 2022
Page 9 of 31

 5 Comparators
In the proposed scheme, every unique encrypted data value has a corresponding, unique, integer value
called a comparator. The purpose of the comparator is to maintain the ordinal relationship of the
underlying data. When new data is added, a comparator is generated for each new data element.

For searching, a user passes one or more search parameters to the application. The application
generates a comparator for each search term, and then performs a regular database query using the
comparator values. Because the comparators maintain an ordinal relationship to the data, this allows
the database to perform both equality and ranged searches.

As a result of the query, the database returns a data set containing the relevant comparator values for
each record, along with the corresponding encrypted data elements, which are then decrypted as needed
by the application.

 5.1 Generating Comparators
Comparators are created using a binary tree whose nodes are the underlying cleartext data values. At
each step, the application retrieves an encrypted data element (node) from the database, decrypts it, and
performs a comparison.

• The application selects a data element to be the “pivot”, which is the first element in the tree.

The pivot is assigned the address of “1”.

• As new elements are added, the binary tree is built in the usual fashion.

◦ If the new value is greater than the decrypted node, the application descends to the right-

hand child node.

◦ If the new value is less than the decrypted node, the application descends to the left-hand

child node.

◦ If the new value matches a node, it shares the same address as the matching node.

◦ If the application finishes descending in to the tree without finding a matching node, the

new value gets added as a child of the last node it visited – either as the right-hand or left-
hand child based on whether it is greater or less than the decrypted node.

• The tree is a logical structure, and the nodes pointed to by the tree are the encrypted data

elements, which are only decrypted when traversing the tree.

• The address of each node is the path taken through the tree, plus “1”.

Justin Parr
November, 2022
Page 10 of 31

◦ Starting at the pivot, the address is empty.

◦ For each left-hand turn (value is less than the node), a “0” is added to the address.

◦ For each right-hand turn (value is greater than the node), a “1” is added to the address.

◦ A “1” is added to the end of the address.

• The resulting comparator is the address, left-justified in an n-bit integer field.

Illustration 2

The initial process of building an example binary tree. Data values are shown in
cleartext, but would be encrypted in the database and only visible to the
application.

For ease of depiction, all binary trees are shown rotated to the left – right-hand
nodes progress upward, and left-hand nodes progress downward.

In Illustration 2, we start with a pivot value, 7235 (1). The next value, 5020 is evaluated against the
pivot (2). In (3), 5020 is less than 7235, so it gets added as the “left” child node. Each node’s address
is the path through the tree, plus “1”.

• Our pivot, 7235, has address “1”, which is “” (blank) with “1” appended.

• Our next data value, 5020, is less than 7235, and gets added as the “left” child node. Tracing

the path through the tree for 5020, we start at the pivot (current address=””), go left (current
address=”0”) and then append “1” (final address=”01”)

• If we left-justify both of these addresses in an 8-bit integer field, we get 128 (1000000) and 64

(01000000) respectively

Justin Parr
November, 2022
Page 11 of 31

Illustration 3

After a few more nodes have been added, this is what the tree looks like.

For ease of depiction, the tree has been rotated to the left – right-hand
nodes progress upward, while left-hand nodes progress downward.

In Illustration 3, the data values have been replaced with their encrypted counterparts. In reality, all
database operations are conducted in an encrypted state.

Looking at the comparator values, the necessity of adding a “1” at the end of the address becomes
clear. Without it, the left-hand three nodes would all have the same address:

Justin Parr
November, 2022
Page 12 of 31

Data Element Tree Address Without “1” With “1”

5020 0 00000000 = 0 01000000 = 64

3028 00 00000000 = 0 00100000 = 32

2823 000 00000000 = 0 00010000 = 16

The trailing “1” ensures that each comparator is discreet.

 5.1.1 Irregular Distribution Prevents Data Leakage

As we’ve seen, schemes that use a fixed search key spacing can leak data by allowing an attacker to
analyze search keys, and then interpolate the underlying data values.

This is possible because the search keys maintain a linear relationship to each other, and to the
underlying data.

Justin Parr
November, 2022
Page 13 of 31

Illustration 4

For cleartext values N, the distribution of comparators progresses at approximately N2, but the
distribution is irregular, and therefore complicates any attempt to interpolate the underlying data.

Comparators, despite being ordered, occur based on their relationship within the tree rather than at
specific intervals, making them much harder to predict.

Although the distribution of comparators progresses at approximately n2, any new comparator can
appear anywhere between two existing ones. Rather than being exactly between them, it could be
arbitrarily close to either one. And, despite this, the scheme always allows new comparators to be
inserted between two others, regardless of how close they are.

This works because the tree address is left-justified within a bit field, making it possible to use
subsequent bits. Despite being an integer, the comparator behaves similar to a decimal, where you can
always create a new number that’s between two others by simply adding another decimal digit.

For example:

Justin Parr
November, 2022
Page 14 of 31

Creating a number between 0.345 and 0.346 can be accomplished by adding a digit. All of the
numbers between and including 0.3451 and 0.3459 are between the two. And for each pair,
there are an infinite number of numbers between them.

The comparator scheme works in a similar fashion, for as many bits that exist within the integer bit
field.

Justin Parr
November, 2022
Page 15 of 31

 5.2 Tree Capacity and Scaling
If n is the number of data elements predicted to occur in the set, the size of the largest comparator is
approximately n2. Because the tree is binary, log2(n2)+1 bits are required – the extra bit accommodates
the “1” address terminator.

Bit Field Size Approximate Number of Elements

8 (7) 11

16 (15) 181

32 (31) 46,340

64 (63) 3,037,000,500

Counter-intuitively, the size of the comparator only depends on the number of elements, not the
magnitude of the underlying data value. Therefore, even large data elements such as long strings can
be represented concisely by integers.

Although either a 32-bit or 64-bit comparator would be suitable for most applications, the comparator
could consist of multiple integers or a string of integers. Chaining an arbitrary number of integers
would allow for a virtually unlimited tree size.

Justin Parr
November, 2022
Page 16 of 31

Illustration 5

Here, two nibbles (4-bit field) are chained together, which is
effectively a single 8-bit field.

For example, a chained 128-bit (127) comparator would consist of 4 chained 32-bit integers or 2
chained 64-bit integers, and would be capable of representing about 13 quadrillion data elements.

Justin Parr
November, 2022
Page 17 of 31

 5.3 Tree Balance, Refactoring, and Collisions
If a specific area of the tree becomes overpopulated, this results in excess depth, and could lead to a
condition where new values can no longer be inserted.

 5.3.1 Refactoring

One method used to address an unbalanced tree is refactoring.

Illustration 6

On the left, the tree is unbalanced, resulting in crowding within the red area – in this example,
there is no room to add new comparitors, because doing so would exceed the bit (tree) depth.

On the right, the tree has been refactored by selecting a new pivot. Because each node in the
crowded section is one position closer to the new pivot, this effectively doubles the capacity
within that portion of the tree. The previous pivot and its child nodes have been re-grafted to the
new pivot.

As there are many algorithms for accomplishing this, and all are well documented elsewhere, a
discussion of the specifics will be excluded here. In general, these algorithms select a new pivot (root),
and then re-graft orphaned nodes within the new sub-tree.

Justin Parr
November, 2022
Page 18 of 31

However, the end result of refactoring is that the tree is more balanced, where each node has
approximately the same number of descendants on both child branches. Because the descendant nodes
are better distributed, this results in a more shallow overall depth, which frees up capacity in regions
that were formerly crowded.

This approach is elegant, because refactoring can be performed using the old comparators without
having to actually decrypt any of the nodes’ data values. During the refactoring process, new tree
addresses, and therefore new comparator values are generated for all data nodes, and the old ones are
simply discarded at the end. Because decryption is not required, the refactoring process can be
conducted by the database engine, for example, within a stored procedure.

This is similar to the process for re-indexing a database table, because database indexes also use a tree
structure. In fact, the final step after refactoring would be to rebuild any database indexes using the
new comparator values, so that the new database index is also balanced properly.

 5.3.2 Collisions

Without refactoring, the other option is to accept collisions, where a single comparator could relate to
multiple data values, even though the underlying data values are different.

In some cases, it may be acceptable to allow collisions, understanding that this affects how queries
behave.

For example, given the following data and associated comparators, we can analyze how allowing
collisions would affect each type of operation.

Comparator (Collisions) Comparator (No Collisions) Cleartext Data Values

10 1
2
3

1111
2222
3333

40 4
5

4444
5555

60 6 6666

70 7
8
9

7777
8888
9999

In the table below, “c” is used for the comparator, and “A” and “B” represent data values.

Operator Without Collisions With Collisions

Equality (A=B) Only exact matches are returned. Values within a small range of A

Justin Parr
November, 2022
Page 19 of 31

For example, WHERE c=4
ONLY returns 4444.

may be returned.

For example, WHERE c=40
returns 4444 and 5555, but
WHERE c=6 only returns 6666.

If the application must make
provisions for situations where
the database returns multiple
records.

Greater Than (A>B)
Less Than (A<B)

Works as expected.

For example, WHERE c>1
returns 2222, 3333, 4444, and so
on.

Could result in gaps.

For example, WHERE c>10
skips 2222 and 3333, and returns
values starting at 4444

To avoid this, the application
must issue >= (Greater or Equal)
or <= (Less or Equal) and then
filter out equalities.

Likewise, WHERE c>=30 would
revert to c>=10, and would
improperly include 1111 and
2222, despite the fact that the
application doesn’t expect these
values.

BETWEEN BETWEEN works like a pair of
inequality comparisons:

A BETWEEN B1 AND B2

Is the same as:

(A >= B1) AND (A<=B2)

Just as with >= and <=, some
extra data values may be
improperly included.

IN IN works like multiple equality
comparisons:

A IN (B1, B2, B3)

Is the same as:

(A=B1) OR (A=B2) OR (A=B3)

Just as with =, some extraneous
data values may be improperly
included.

Justin Parr
November, 2022
Page 20 of 31

Depending upon the nature of the application, collisions and their associated limitations may be
acceptable, in order to avoid refactoring or integer chaining.

 5.4 Searching Using Comparators
In the illustration below, the original data values are shown in blue for clarity, but in a real database, the
cleartext data wouldn’t be present.

Illustration 7

Creating comparators from search terms follows the same process as
adding a new node, but without permanence. When the search is
complete, the search comparators are discarded.

Justin Parr
November, 2022
Page 21 of 31

In Illustration 7, we create comparators for two numeric parameters that are search terms for a
BETWEEN operation in a WHERE clause.

The resulting search comparators, 48 and 144, maintain an ordinal relationship to the underlying data,
even though we can’t see the actual values.

Rather than having to decrypt every value in the database, we simply let the database perform a normal
search on the comparators.

Illustration 8

The application replaces database search terms with search
comparators, and then the database executes the query.

In Illustration 8, the application wants to run a query for data elements within a specific range. These
could be confidential performance data for a new engine, or maybe protected health data.

Justin Parr
November, 2022
Page 22 of 31

1. The application needs to run a query using normal terms.

2. The application converts the search terms to search comparators.

3. The application writes a new query using search comparators.

4. The database executes the comparator query, and returns the resulting encrypted data elements
to the application.

Once search values are converted to search comparators, the database query process behaves very
similar to querying the underlying cleartext data.

However, the data returned to the application by the database could vary based on the use case.

Result Set Use Cases

A list of comparators, assuming that
comparators have a UNIQUE
constraint (no duplicates are allowed)

If the application needs to identify certain records without
actually acting on them, the application can act upon the
comparator is if it was the underlying data, without having to
decrypt it.

For example, perhaps you want to send birthday cards to
everyone born this month – the application can act on all
records whose birth date is within a range without decrypting
the actual birth dates.

Another example is updating a group of accounts whose
account number falls within a certain range, without ever
decrypting the account numbers.

A data set containing encrypted data
values

If the application needs to act upon the the data directly, the
database can return the encrypted values, which are then
decrypted as needed by the application.

For example, a healthcare application might look for a
patient’s encrypted blood pressure readings that are within a
certain range. Because the readings themselves have specific
meaning, the application needs the actual data rather than just
the comparator.

The result of an aggregation function,
such as MIN, MAX, or COUNT

Aggregation functions can be used to find the oldest account,
or simply tally the number of customers within a certain age
range.

In another example, an application can answer a simple
question such as “is the account holder a minor” by using

Justin Parr
November, 2022
Page 23 of 31

comparators. The application takes today’s date, subtracts 18
years, and generates a comparator. If the comparator for a
person’s birth date is less than this value, they are a minor.

In addition to the above, and similar to data masking, comparators can be passed to downstream
applications without compromising the underlying data.

 5.4.1 Complex Queries

An application can query multiple, protected parameters, assuming that each one has an equivalent
comparator.

For example, an application might need to know which account holders are within a certain age range,
and whose credit scores are within a certain range. Both of these are protected elements, and therefore
encrypted within the database.

However, if both birth date and credit score each have comparators, a complex query allows searching
within an overlapping range:

SELECT FROM accounts WHERE c_dob BETWEEN c1,1 AND c1,2 AND c_credit_score BETWEEN
c2,1 AND c2,2

In another example, if an account holder’s address is encoded with latitude and longitude, each
encrypted, and each having comparators, then a complex query can be used to search for customers
within a specified geographical area:

SELECT FROM accounts WHERE c_latitude BETWEEN c1,1 AND c1,2 AND c_longitude BETWEEN
c2,1 AND c2,2

And, as with data masking, if key values have unique comparators, joins can be performed using only
the comparators:

SELECT a.* FROM tbl1 a INNER JOIN tbl2 b ON a.c_account = b.c_account

This would come in to play, for example, if joining an “accounts” table to a “transactions” table
without having to decrypt individual account values.

 5.5 Deleting Rows – Managing the B-Tree
When a row is deleted from a database table, it’s encrypted value might leave a hole in the b-tree,
which prevents any new comparators from being generated beyond the “missing” node.

Justin Parr
November, 2022
Page 24 of 31

There are several ways that the application can deal with this:

• Leave the node in-tact. Although the node no longer corresponds to a “real” data value, it can

still be used to generate new comparators. This strategy requires that the application must store
all node values in a separate table. “Deleted” nodes can be eliminated by refactoring. This
approach requires the least computational overhead.

• A nodes has up to two children. Removing a node can be accomplished by promoting one

child, and then grafting the other. If the two children are “L” and “R”, respectively, then:

All nodes in the left-hand sub-tree are less in value than the lowest value in the right-
hand tree, or:

LR..R < RL..L

Effectively, this means that if we promote the right-hand node, the “orphaned” left-hand node
can be re-grafted as a child of the right sub-tree’s lowest node. Unfortunately, this results in a
new sub-tree with the combined bit depth of both former sub-trees, and higher bit depths are
less efficient.

• Refactor the new sub-tree. Computationally, this is the least efficient option, but results in

the most efficient tree (post-deletion).

• Generate an artificial node. The new node must follow this relationship:

LR..R < N < RL..L

Based on this relationship, the easiest way to generate a new node is to average the two:

N = (LR..R + RL..L) / 2

The application would calculate the new node value and store it in a separate table, similar to a
scheme used for keeping deleted nodes.

This approach is functionally-equivalent to keeping deleted nodes, while being computationally
less-efficient.

• Graft both child nodes to other parts of the tree. If we ascend to the deleted-node’s parent,

P1, and to that node’s parent P2, then one of the following relationships most likely exists:

a) P1L..R < (R,L) < P2L..L

b) P2L..R < (R,L) < P1R

As with promotion, this approach could lead to excessive bit depth.

Justin Parr
November, 2022
Page 25 of 31

 5.6 Using Other Data Types as Comparators
Integers are very efficient, because they are the native data type of the CPU – both the database server
and the application server can process and store them without extra steps required to convert them back
and forth between other formats. Also, integers require the least amount of storage compared to other
formats, making them efficient to store in large quantities.

Integers are so efficient that they are used natively by the database engine – things like record IDs and
index pointers are stored and processed internal to the database as integers. Even dates and times are
converted to integers, where they are stored and processed natively, and only need to be displayed as a
date or time when a user needs to see the data.

However, modern servers have an abundance of CPU, memory, and disk storage, making it feasible
(although not quite as efficient) to use other data types as comparators.

 5.6.1 String Comparators

Database engines are good at comparing strings, and like numbers, strings are usually human-readable.

For example, base64 encoding uses a 6-bit human-readable symbol set to store groups of 3 bytes as
groups of 4 symbols. This allows base64-encoded data to be easily transmitted or copied to other
systems via user-space operations, such as copying in to an e-mail.

Using a similar scheme, comparators can be stored as a string of human-readable symbols, where each
character stores up to 6 bits of information, and is substituted from a symbol table during the encoding
process.

If we compare this to a 64-bit integer, which can store up to 63 bits of comparator data, an 8-byte (non-
Unicode) string can store only 48. However, unlike native integer types, a string can be extended to
any arbitrary length, making it much more flexible for large data sets.

Further, the database engine already knows how to sort and index strings, which mitigates most of the
performance penalty incurred by using a more complex data type.

Human-readability is useful for debugging and troubleshooting, as well as interoperability with other
systems. Likewise, if an encrypted data element needs to appears on a report, depending on the use
case, its comparator can appear in its place.

 5.6.1.1 Caveat about Strings as Comparators

Although comparators don’t directly leak information, a clever attacker could use the length of a string
comparator to deduce the population density of the corresponding region of the tree.

Justin Parr
November, 2022
Page 26 of 31

For example:

• Longer strings indicate a greater depth, which indicates a higher node density.

• Shorter strings don’t necessarily indicate anything other than the fact that the node in

question is closer to the root of the tree.

This type of information could be used as an attack vector, or in conjunction with other information
about the underlying data.

 5.6.2 Binary String

Although human-readability is nice to have, it’s not usually a requirement.

In a binary string, each element represents a byte or some other integer data type, with the caveat that
many elements won’t be printable. A binary string can contain up to 8 bits of data per symbol (non-
unicode), or up to 32 if stored as a unicode string.

This provides the advantages and flexibility of a string data type, while storing the tree address for each
node as efficiently as possible. A byte array stored as a string behaves like an arbitrary-precision, big-
endian integer.

If configured properly, most database engines can sort and index binary strings. This is usually referred
to as “sort order”, and a field containing binary strings would require a binary sort order.

 5.6.3 Poor Data Types for Comparators

Some data types make poor comparators.

 5.6.3.1 Floating Points

There is no reason to use a floating point over an integer, and floating points come with special
complexities because of their format.

Type Bits Sign Bits Exponent Bits Mantissa Bits

Single-Precision 32 1 8 23

Double-Precision 64 1 11 52

If the application uses a floating point directly, the maximum precision available (size of the mantissa)
is only about ¾ of the total size. If used as a bit field, this can produce unpredictable results, such as:

Justin Parr
November, 2022
Page 27 of 31

• +0 or -0, which are separate numbers. Integers use 2’s compliment, meaning that there is only

one 0.

• “NaN” or “Not a Number”, which is a predefined, invalid value. There is +NaN and -NaN.

• Values can vary from very large (positive exponent) to very small (negative exponent)

 5.6.3.2 Binary Large OBject (BLOB)

Most databases support a “BLOB” (Binary Large OBject) field type, meant to store images or other
binary (not human-readable) data.

Regular data is stored in “pages” within the database, where each page contains multiple rows.

However, BLOB fields are stored as a pointer to another page location that contains the actual data. A
pointer at the end of each BLOB page allows them to be linked, which means that BLOBs can grow
arbitrarily large.

BLOBs have several disadvantages:

• Typically, because a BLOB is just a pointer, BLOB fields can’t be indexed directly – the

application would rely on other fields to contain metadata (such as an image name) that can be
indexed using the normal process.

• BLOBs are slower than other data types because of the indirect storage process.

• A minimum of one, dedicated BLOB page is allocated for each row, which means that using

BLOBs is extremely expensive from a storage perspective.

• BLOBs can’t be interpreted natively by the database – only by the application.

Justin Parr
November, 2022
Page 28 of 31

 6 Binary Comparators vs Other Schemes
There are currently three basic approaches to searching encrypted data.

 6.1 IBE / MRQED
Identity-Based Encryption (IBE) uses the data itself to generate decryption keys. IBE schemes do not
guarantee any kind of ordinal relationship to the encrypted data.

MRQED is a scheme that uses AHIBE (Anonymous, Hierarchical IBE) to grant an auditor limited
access to network logs that are already sorted and presumably indexed prior to encryption. The focus
of MRQED is to provide a a set of keys that can decrypt the information in question without
compromising the rest. Like Binary Comparators, MRQED uses a b-tree sorting function, but the
nodes consist of integers at fixed intervals within the tree.

This approach works well for data that’s static, such as audit logs. However, this approach has two
problems when dealing with tables that are taking live transactions:

• The search keys could be used to interpolate underlying data values by repeatedly querying

different ranges.

• A tree that uses fixed-interval search keys can quickly become unbalanced, where no new nodes

can be added to a crowded portion of the tree. Because binary comparators are derived from the
underlying data element’s tree location, the tree can easily be refactored if needed, without
having to regenerate the entire tree.

 6.2 Fixed Search Keys
Fixed search keys (with or without a b-tree) have the limitations described above:

• The keys themselves could be used to interpolate underlying data values, especially via repeated

queries.

• The fixed interval provides very little flexibility when adding data to a highly-transactional

table.

Justin Parr
November, 2022
Page 29 of 31

 6.3 Hidden Vector
A hidden vector is a piece of metadata that is used during the encryption process. Later, the application
can perform a cryptographic function on the encrypted value to determine the underlying data’s ordinal
value.

Although this is safer than decrypting every single data value, it’s not any faster. Each row must be
manipulated in order to determine which rows fall within a query’s range.

Conversely, binary comparators are generated once for each new data element, and remain static until
the tree is refactored, or until the corresponding data element is deleted.

Justin Parr
November, 2022
Page 30 of 31

 7 Conclusion
Field-level encryption offers the strongest level of encryption, but creates challenges when performing
ranged searches.

Because comparators are left-justified within an integer bit field, they maintain an ordinal relationship
to the underlying data without leaking information.

Comparators, can be used to perform ranged queries without having to decrypt the underlying data,
because they have the same ordinal relationship as the underlying data.

Scaling can be accomplished using integer chaining or strings.

As with data masking, if comparators are suitably unique, the comparator itself can be substituted for
the underlying cleartext data value.

Because comparators are ordered, databases can perform ranged searches with optimum performance,
because the sort order is preserved. Only the application sees the data in cleartext.

Similar to a database index, periodic maintenance should consist of refactoring the b-tree in order to
ensure optimum bit depth and performance.

Unlike other ranged-search schemes, comparators don’t rely on key generation mechanisms, key
distribution schemes, nor any fixed relationship with the underlying data.

Justin Parr
November, 2022
Page 31 of 31

